Suppr超能文献

用于从蛋白质-蛋白质相互作用网络预测疾病结果的图核

Graph kernels for disease outcome prediction from protein-protein interaction networks.

作者信息

Borgwardt Karsten M, Kriegel Hans-Peter, Vishwanathan S V N, Schraudolph Nicol N

机构信息

Institute for Computer Science, Ludwig-Maximilians- University Munich, Oettingenstr. 67, 80538 Munich, Germany.

出版信息

Pac Symp Biocomput. 2007:4-15.

Abstract

It is widely believed that comparing discrepancies in the protein-protein interaction (PPI) networks of individuals will become an important tool in understanding and preventing diseases. Currently PPI networks for individuals are not available, but gene expression data is becoming easier to obtain and allows us to represent individuals by a co-integrated gene expression/protein interaction network. Two major problems hamper the application of graph kernels - state-of-the-art methods for whole-graph comparison - to compare PPI networks. First, these methods do not scale to graphs of the size of a PPI network. Second, missing edges in these interaction networks are biologically relevant for detecting discrepancies, yet, these methods do not take this into account. In this article we present graph kernels for biological network comparison that are fast to compute and take into account missing interactions. We evaluate their practical performance on two datasets of co-integrated gene expression/PPI networks.

摘要

人们普遍认为,比较个体蛋白质-蛋白质相互作用(PPI)网络中的差异将成为理解和预防疾病的重要工具。目前尚无个体的PPI网络,但基因表达数据越来越容易获取,这使我们能够通过共整合基因表达/蛋白质相互作用网络来表示个体。有两个主要问题阻碍了图核(用于全图比较的最先进方法)在比较PPI网络中的应用。首先,这些方法无法扩展到PPI网络大小的图。其次,这些相互作用网络中的缺失边对于检测差异具有生物学相关性,但这些方法并未考虑这一点。在本文中,我们提出了用于生物网络比较的图核,它们计算速度快,并考虑了缺失的相互作用。我们在两个共整合基因表达/PPI网络数据集上评估了它们的实际性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验