Borgwardt Karsten M, Kriegel Hans-Peter, Vishwanathan S V N, Schraudolph Nicol N
Institute for Computer Science, Ludwig-Maximilians- University Munich, Oettingenstr. 67, 80538 Munich, Germany.
Pac Symp Biocomput. 2007:4-15.
It is widely believed that comparing discrepancies in the protein-protein interaction (PPI) networks of individuals will become an important tool in understanding and preventing diseases. Currently PPI networks for individuals are not available, but gene expression data is becoming easier to obtain and allows us to represent individuals by a co-integrated gene expression/protein interaction network. Two major problems hamper the application of graph kernels - state-of-the-art methods for whole-graph comparison - to compare PPI networks. First, these methods do not scale to graphs of the size of a PPI network. Second, missing edges in these interaction networks are biologically relevant for detecting discrepancies, yet, these methods do not take this into account. In this article we present graph kernels for biological network comparison that are fast to compute and take into account missing interactions. We evaluate their practical performance on two datasets of co-integrated gene expression/PPI networks.
人们普遍认为,比较个体蛋白质-蛋白质相互作用(PPI)网络中的差异将成为理解和预防疾病的重要工具。目前尚无个体的PPI网络,但基因表达数据越来越容易获取,这使我们能够通过共整合基因表达/蛋白质相互作用网络来表示个体。有两个主要问题阻碍了图核(用于全图比较的最先进方法)在比较PPI网络中的应用。首先,这些方法无法扩展到PPI网络大小的图。其次,这些相互作用网络中的缺失边对于检测差异具有生物学相关性,但这些方法并未考虑这一点。在本文中,我们提出了用于生物网络比较的图核,它们计算速度快,并考虑了缺失的相互作用。我们在两个共整合基因表达/PPI网络数据集上评估了它们的实际性能。