Nguyen Hung, Nguyen Thin, Nguyen Duc Thanh
Faculty of IT, Nha Trang University, Nha Trang, Vietnam.
Applied Artificial Intelligence Institute, Deakin University, Geelong, VIC 3220 Australia.
Multimed Tools Appl. 2021;80(5):7187-7204. doi: 10.1007/s11042-020-10034-0. Epub 2020 Oct 26.
We propose in this work a graph-based approach for automatic public health analysis using social media. In our approach, graphs are created to model the interactions between features and between tweets in social media. We investigated different graph properties and methods in constructing graph-based representations for population health analysis. The proposed approach is applied in two case studies: (1) estimating health indices, and (2) classifying health situation of counties in the US. We evaluate our approach on a dataset including more than one billion tweets collected in three years 2014, 2015, and 2016, and the health surveys from the Behavioral Risk Factor Surveillance System. We conducted realistic and large-scale experiments on various textual features and graph-based representations. Experimental results verified the robustness of the proposed approach and its superiority over existing ones in both case studies, confirming the potential of graph-based approach for modeling interactions in social networks for population health analysis.
在这项工作中,我们提出了一种基于图的方法,用于利用社交媒体进行自动公共卫生分析。在我们的方法中,创建图来对社交媒体中特征之间以及推文之间的交互进行建模。我们研究了不同的图属性和方法,以构建用于人群健康分析的基于图的表示。所提出的方法应用于两个案例研究:(1)估计健康指数,以及(2)对美国各县的健康状况进行分类。我们在一个包含2014年、2015年和2016年三年间收集的超过10亿条推文以及行为风险因素监测系统的健康调查数据集上评估我们的方法。我们针对各种文本特征和基于图的表示进行了实际且大规模的实验。实验结果验证了所提出方法的稳健性及其在两个案例研究中相对于现有方法的优越性,证实了基于图的方法在为人群健康分析对社交网络中的交互进行建模方面的潜力。