Muralla Rosanna, Chen Elve, Sweeney Colleen, Gray Jennifer A, Dickerman Allan, Nikolau Basil J, Meinke David
Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA.
Plant Physiol. 2008 Jan;146(1):60-73. doi: 10.1104/pp.107.107409. Epub 2007 Nov 9.
We identify here the Arabidopsis (Arabidopsis thaliana) gene encoding the third enzyme in the biotin biosynthetic pathway, dethiobiotin synthetase (BIO3; At5g57600). This gene is positioned immediately upstream of BIO1, which is known to be associated with the second reaction in the pathway. Reverse genetic analysis demonstrates that bio3 insertion mutants have a similar phenotype to the bio1 and bio2 auxotrophs identified using forward genetic screens for arrested embryos rescued on enriched nutrient medium. Unexpectedly, bio3 and bio1 mutants define a single genetic complementation group. Reverse transcription-polymerase chain reaction analysis demonstrates that separate BIO3 and BIO1 transcripts and two different types of chimeric BIO3-BIO1 transcripts are produced. Consistent with genetic data, one of the fused transcripts is monocistronic and encodes a bifunctional fusion protein. A splice variant is bicistronic, with distinct but overlapping reading frames. The dual functionality of the monocistronic transcript was confirmed by complementing the orthologous auxotrophs of Escherichia coli (bioD and bioA). BIO3-BIO1 transcripts from other plants provide further evidence for differential splicing, existence of a fusion protein, and localization of both enzymatic reactions to mitochondria. In contrast to most biosynthetic enzymes in eukaryotes, which are encoded by genes dispersed throughout the genome, biotin biosynthesis in Arabidopsis provides an intriguing example of a bifunctional locus that catalyzes two sequential reactions in the same metabolic pathway. This complex locus exhibits several unusual features that distinguish it from biotin operons in bacteria and from other genes known to encode bifunctional enzymes in plants.
我们在此鉴定了拟南芥(Arabidopsis thaliana)中编码生物素生物合成途径第三种酶——脱硫生物素合成酶(BIO3;At5g57600)的基因。该基因紧邻BIO1上游,已知BIO1与该途径中的第二步反应相关。反向遗传学分析表明,bio3插入突变体具有与通过正向遗传学筛选鉴定出的bio1和bio2营养缺陷型类似的表型,这些营养缺陷型在富集营养培养基上能使停滞的胚胎得到拯救。出乎意料的是,bio3和bio1突变体属于同一个遗传互补群。逆转录-聚合酶链反应分析表明,产生了单独的BIO3和BIO1转录本以及两种不同类型的嵌合BIO3-BIO1转录本。与遗传数据一致,其中一种融合转录本是单顺反子的,编码一种双功能融合蛋白。一种剪接变体是双顺反子的,具有不同但重叠的阅读框。通过互补大肠杆菌的直系营养缺陷型(bioD和bioA)证实了单顺反子转录本的双重功能。来自其他植物的BIO3-BIO1转录本为差异剪接、融合蛋白的存在以及两种酶促反应定位于线粒体提供了进一步的证据。与真核生物中大多数由分散在基因组中的基因编码的生物合成酶不同,拟南芥中的生物素生物合成提供了一个有趣的例子,即一个双功能基因座催化同一代谢途径中的两个连续反应。这个复杂的基因座表现出几个不寻常的特征,使其有别于细菌中的生物素操纵子以及植物中已知编码双功能酶的其他基因。