Zarnitsyn Vladimir G, Meacham J Mark, Varady Mark J, Hao Chunhai, Degertekin F Levent, Fedorov Andrei G
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30302, USA.
Biomed Microdevices. 2008 Apr;10(2):299-308. doi: 10.1007/s10544-007-9137-4.
We report on development and experimental characterization of a novel cell manipulation device-the electrosonic ejector microarray-which establishes a pathway for drug and/or gene delivery with control of biophysical action on the length scale of an individual cell. The device comprises a piezoelectric transducer for ultrasound wave generation, a reservoir for storing the sample mixture and a set of acoustic horn structures that form a nozzle array for focused application of mechanical energy. The nozzles are micromachined in silicon or plastic using simple and economical batch fabrication processes. When the device is driven at a particular resonant frequency of the acoustic horn structures, the sample mixture of cells and desired transfection agents/molecules suspended in culture medium is ejected from orifices located at the nozzle tips. During sample ejection, focused mechanical forces (pressure and shear) are generated on a microsecond time scale (dictated by nozzle size/geometry and ejection velocity) resulting in identical "active" microenvironments for each ejected cell. This process enables a number of cellular bioeffects, from uptake of small molecules and gene delivery/transfection to cell lysis. Specifically, we demonstrate successful calcein uptake and transfection of DNA plasmid encoding green fluorescent protein (GFP) into human malignant glioma cells (cell line LN443) using electrosonic microarrays with 36, 45 and 50 mum diameter nozzle orifices and operating at ultrasound frequencies between 0.91 and 0.98 MHz. Our results suggest that efficacy and the extent of bioeffects are mainly controlled by nozzle orifice size and the localized intensity of the applied acoustic field.
我们报告了一种新型细胞操控装置——电声喷射微阵列的开发与实验表征,该装置为药物和/或基因递送开辟了一条途径,能够在单个细胞的长度尺度上控制生物物理作用。该装置包括一个用于产生超声波的压电换能器、一个用于储存样品混合物的储液器以及一组声喇叭结构,这些结构形成了一个用于聚焦施加机械能的喷嘴阵列。喷嘴采用简单且经济的批量制造工艺在硅或塑料中进行微加工。当以声喇叭结构的特定共振频率驱动该装置时,悬浮在培养基中的细胞与所需转染剂/分子的样品混合物会从位于喷嘴尖端的孔口喷出。在样品喷射过程中,会在微秒时间尺度上产生聚焦机械力(压力和剪切力)(由喷嘴尺寸/几何形状和喷射速度决定),从而为每个喷射出的细胞创造相同的“活性”微环境。这一过程能够引发多种细胞生物效应,从小分子摄取、基因递送/转染到细胞裂解。具体而言,我们展示了使用直径为36、45和50微米的喷嘴孔口且在0.91至0.98兆赫兹超声频率下运行的电声微阵列,成功地将钙黄绿素摄取以及编码绿色荧光蛋白(GFP)的DNA质粒转染到人恶性胶质瘤细胞(细胞系LN443)中。我们的结果表明,生物效应的功效和程度主要由喷嘴孔口尺寸和所施加声场的局部强度控制。