Suppr超能文献

具有交叉扩散的化学自复制反应扩散系统中的分岔图和图灵模式

Bifurcation diagrams and Turing patterns in a chemical self-replicating reaction-diffusion system with cross diffusion.

作者信息

Chung Jessica M, Peacock-López Enrique

机构信息

Department of Chemistry, Williams College, Williamstown, Massachusetts 01267, USA.

出版信息

J Chem Phys. 2007 Nov 7;127(17):174903. doi: 10.1063/1.2784554.

Abstract

Chemical self-replication of oligonucleotides and helical peptides exhibits the so-called square root rate law. Based on this rate we extend our previous work on ideal replicators to include the square root rate and other possible nonlinearities, which we couple with an enzymatic sink. For this generalized model, we consider the role of cross diffusion in pattern formation, and we obtain exact general relations for the Poincare-Adronov-Hopf and Turing bifurcations, and our generalized results include the Higgins, Autocatalator, and Templator models as specific cases.

摘要

寡核苷酸和螺旋肽的化学自我复制呈现出所谓的平方根速率定律。基于此速率,我们扩展了之前关于理想复制器的工作,将平方根速率和其他可能的非线性因素纳入其中,并将其与酶促汇耦合。对于这个广义模型,我们考虑了交叉扩散在图案形成中的作用,得到了庞加莱 - 安德罗诺夫 - 霍普夫分岔和图灵分岔的精确一般关系,我们的广义结果包括希金斯模型、自催化模型和模板模型作为特殊情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验