Flomenbom O, Silbey R J
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):041101. doi: 10.1103/PhysRevE.76.041101. Epub 2007 Oct 1.
In random walks, the path representation of the Green's function is an infinite sum over the length of path probability density functions (PDFs). Recently, a closed-form expression for the Green's function of an arbitrarily inhomogeneous semi-Markovian random walk in a one-dimensional (1D) chain of L states was obtained by utilizing path-PDFs calculations. Here we derive and solve, in Laplace space, the recursion relation for the n order path PDF for the same system. The recursion relation relates the n order path PDF to L/2 (round towards zero for an odd L) shorter path PDFs and has n independent coefficients that obey a universal formula. The z transform of the recursion relation straightforwardly gives the generating function for path PDFs, from which we recover the Green's function of the random walk, but, moreover, derive an explicit expression for any path PDF of the random walk. These expressions give the most detailed description of arbitrarily inhomogeneous semi-Markovian random walks in 1D.
在随机游走中,格林函数的路径表示是对路径概率密度函数(PDF)长度的无穷求和。最近,通过利用路径PDF计算,得到了一维(1D)L个状态的链中任意非均匀半马尔可夫随机游走的格林函数的封闭形式表达式。在这里,我们在拉普拉斯空间中推导并求解了同一系统的n阶路径PDF的递归关系。该递归关系将n阶路径PDF与L/2(L为奇数时四舍五入为零)个较短路径PDF相关联,并且有n个服从通用公式的独立系数。递归关系的z变换直接给出了路径PDF的生成函数,从中我们恢复了随机游走的格林函数,而且还推导出了随机游走任意路径PDF的显式表达式。这些表达式给出了一维中任意非均匀半马尔可夫随机游走的最详细描述。