Tromer R M, Barbosa M B, Bartumeus F, Catalan J, da Luz M G E, Raposo E P, Viswanathan G M
Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal-RN, 59078-970, Brazil.
Centre d'Estudis Avançats de Blanes (CEAB), CSIC, Blanes, 17300, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022147. doi: 10.1103/PhysRevE.92.022147. Epub 2015 Aug 28.
An important problem in the study of anomalous diffusion and transport concerns the proper analysis of trajectory data. The analysis and inference of Lévy walk patterns from empirical or simulated trajectories of particles in two and three-dimensional spaces (2D and 3D) is much more difficult than in 1D because path curvature is nonexistent in 1D but quite common in higher dimensions. Recently, a new method for detecting Lévy walks, which considers 1D projections of 2D or 3D trajectory data, has been proposed by Humphries et al. The key new idea is to exploit the fact that the 1D projection of a high-dimensional Lévy walk is itself a Lévy walk. Here, we ask whether or not this projection method is powerful enough to cleanly distinguish 2D Lévy walk with added curvature from a simple Markovian correlated random walk. We study the especially challenging case in which both 2D walks have exactly identical probability density functions (pdf) of step sizes as well as of turning angles between successive steps. Our approach extends the original projection method by introducing a rescaling of the projected data. Upon projection and coarse-graining, the renormalized pdf for the travel distances between successive turnings is seen to possess a fat tail when there is an underlying Lévy process. We exploit this effect to infer a Lévy walk process in the original high-dimensional curved trajectory. In contrast, no fat tail appears when a (Markovian) correlated random walk is analyzed in this way. We show that this procedure works extremely well in clearly identifying a Lévy walk even when there is noise from curvature. The present protocol may be useful in realistic contexts involving ongoing debates on the presence (or not) of Lévy walks related to animal movement on land (2D) and in air and oceans (3D).
反常扩散与输运研究中的一个重要问题涉及对轨迹数据的恰当分析。从二维和三维空间(2D和3D)中粒子的经验轨迹或模拟轨迹分析和推断 Lévy 行走模式比在一维空间中困难得多,因为在一维空间中不存在路径曲率,而在更高维度中却很常见。最近,Humphries 等人提出了一种检测 Lévy 行走的新方法,该方法考虑二维或三维轨迹数据的一维投影。关键的新想法是利用高维 Lévy 行走的一维投影本身就是一个 Lévy 行走这一事实。在此,我们要问这种投影方法是否强大到足以清晰地区分添加了曲率的二维 Lévy 行走与简单的马尔可夫相关随机行走。我们研究了一个特别具有挑战性的情况,即两种二维行走的步长以及连续步之间的转向角具有完全相同的概率密度函数(pdf)。我们的方法通过对投影数据进行重新缩放扩展了原始投影方法。经过投影和粗粒化后,当存在潜在的 Lévy 过程时,连续转向之间行进距离的重整化 pdf 会呈现出肥尾。我们利用这一效应在原始的高维弯曲轨迹中推断出 Lévy 行走过程。相比之下,以这种方式分析(马尔可夫)相关随机行走时不会出现肥尾。我们表明,即使存在来自曲率的噪声,该过程在清晰识别 Lévy 行走方面也极其有效。本方案在涉及关于陆地(二维)以及空气和海洋(三维)中与动物运动相关的 Lévy 行走是否存在的持续争论的现实情境中可能会有用。