Suppr超能文献

具有一般 Lévy 跳跃分布函数的连续时间随机游走的流体极限

Fluid limit of the continuous-time random walk with general Lévy jump distribution functions.

作者信息

Cartea A, del-Castillo-Negrete D

机构信息

Birkbeck, University of London, London, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):041105. doi: 10.1103/PhysRevE.76.041105. Epub 2007 Oct 3.

Abstract

The continuous time random walk (CTRW) is a natural generalization of the Brownian random walk that allows the incorporation of waiting time distributions psi(t) and general jump distribution functions eta(x). There are two well-known fluid limits of this model in the uncoupled case. For exponential decaying waiting times and Gaussian jump distribution functions the fluid limit leads to the diffusion equation. On the other hand, for algebraic decaying waiting times psi approximately t(-(1+beta)) and algebraic decaying jump distributions eta approximately x(-(1+alpha)) corresponding to Lévy stable processes, the fluid limit leads to the fractional diffusion equation of order alpha in space and order beta in time. However, these are two special cases of a wider class of models. Here we consider the CTRW for the most general Lévy stochastic processes in the Lévy-Khintchine representation for the jump distribution function and obtain an integrodifferential equation describing the dynamics in the fluid limit. The resulting equation contains as special cases the regular and the fractional diffusion equations. As an application we consider the case of CTRWs with exponentially truncated Lévy jump distribution functions. In this case the fluid limit leads to a transport equation with exponentially truncated fractional derivatives which describes the interplay between memory, long jumps, and truncation effects in the intermediate asymptotic regime. The dynamics exhibits a transition from superdiffusion to subdiffusion with the crossover time scaling as tauc approximately lambda(-alpha/beta), where 1/lambda is the truncation length scale. The asymptotic behavior of the propagator (Green's function) of the truncated fractional equation exhibits a transition from algebraic decay for t<>tauc.

摘要

连续时间随机游走(CTRW)是布朗随机游走的自然推广,它允许纳入等待时间分布ψ(t)和一般跳跃分布函数η(x)。在非耦合情况下,该模型有两个著名的流体极限。对于指数衰减的等待时间和高斯跳跃分布函数,流体极限导致扩散方程。另一方面,对于对应于 Lévy 稳定过程的代数衰减等待时间ψ≈t^(-(1 + β))和代数衰减跳跃分布η≈x^(-(1 + α)),流体极限导致空间维度为α、时间维度为β的分数阶扩散方程。然而,这些只是更广泛一类模型中的两个特殊情况。在这里,我们考虑在跳跃分布函数的 Lévy - Khintchine 表示中最一般的 Lévy 随机过程的 CTRW,并得到一个描述流体极限下动力学的积分 - 微分方程。所得方程包含正则扩散方程和分数阶扩散方程作为特殊情况。作为一个应用,我们考虑具有指数截断 Lévy 跳跃分布函数的 CTRW 情况。在这种情况下,流体极限导致一个带有指数截断分数阶导数的输运方程,它描述了中间渐近区域中记忆、长跳跃和截断效应之间的相互作用。动力学表现出从超扩散到亚扩散的转变,交叉时间标度为τc≈λ^(-α/β),其中 1/λ是截断长度标度。截断分数阶方程的传播子(格林函数)的渐近行为表现出从 t << τc 时的代数衰减到 t >> τc 时的拉伸高斯衰减的转变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验