Suppr超能文献

用于弱遍历性破坏的分数阶费曼 - 卡茨方程。

Fractional Feynman-Kac equation for weak ergodicity breaking.

作者信息

Carmi Shai, Barkai Eli

机构信息

Department of Physics & Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan 52900, Israel.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 1):061104. doi: 10.1103/PhysRevE.84.061104. Epub 2011 Dec 5.

Abstract

The continuous-time random walk (CTRW) is a model of anomalous subdiffusion in which particles are immobilized for random times between successive jumps. A power-law distribution of the waiting times, ψ(τ) ~ τ(-(1+α)), leads to subdiffusion (x(2) ~ t(α)) for 0 < α < 1. In closed systems, the long stagnation periods cause time averages to divert from the corresponding ensemble averages, which is a manifestation of weak ergodicity breaking. The time average of a general observable U(t) = 1/t ∫(0)(t) U[x(τ)]dτ is a functional of the path and is described by the well-known Feynman-Kac equation if the motion is Brownian. Here, we derive forward and backward fractional Feynman-Kac equations for functionals of CTRW in a binding potential. We use our equations to study two specific time averages: the fraction of time spent by a particle in half-box, and the time average of the particle's position in a harmonic field. In both cases, we obtain the probability density function of the time averages for t → ∞ and the first two moments. Our results show that both the occupation fraction and the time-averaged position are random variables even for long times, except for α = 1, when they are identical to their ensemble averages. Using our fractional Feynman-Kac equation, we also study the dynamics leading to weak ergodicity breaking, namely the convergence of the fluctuations to their asymptotic values.

摘要

连续时间随机游走(CTRW)是一种反常亚扩散模型,其中粒子在连续跳跃之间会随机停留一段时间。等待时间的幂律分布ψ(τ) ~ τ^(-(1 + α)),对于0 < α < 1会导致亚扩散(x² ~ t^α)。在封闭系统中,长时间的停滞期会使时间平均值偏离相应的系综平均值,这是弱遍历性破坏的一种表现。一般可观测量U(t) = 1/t ∫₀ᵗ U[x(τ)]dτ的时间平均值是路径的泛函,如果运动是布朗运动,则由著名的费曼 - 卡茨方程描述。在这里,我们推导了在束缚势中CTRW泛函的向前和向后分数阶费曼 - 卡茨方程。我们用我们的方程研究两个特定的时间平均值:粒子在半盒中花费的时间分数,以及粒子在谐振场中的位置的时间平均值。在这两种情况下,我们都得到了t → ∞时时间平均值的概率密度函数以及前两阶矩。我们的结果表明,即使在长时间情况下,除了α = 1时它们与系综平均值相同外,占据分数和时间平均位置都是随机变量。使用我们的分数阶费曼 - 卡茨方程,我们还研究了导致弱遍历性破坏的动力学,即涨落向其渐近值的收敛。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验