Kiyono Ken, Struzik Zbigniew R, Yamamoto Yoshiharu
College of Engineering, Nihon University, 1 Naka-gawara, Tokusada, Tamura-machi, Koriyama City, Fukushima 963-8642, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):041113. doi: 10.1103/PhysRevE.76.041113. Epub 2007 Oct 8.
We study non-Gaussian probability density functions (PDF's) of multiplicative log-normal models in which the multiplication of Gaussian and log-normally distributed random variables is considered. To describe the PDF of the velocity difference between two points in fully developed turbulent flows, the non-Gaussian PDF model was originally introduced by Castaing [Physica D 46, 177 (1990)]. In practical applications, an experimental PDF is approximated with Castaing's model by tuning a single non-Gaussian parameter, which corresponds to the logarithmic variance of the log-normally distributed variable in the model. In this paper, we propose an estimator of the non-Gaussian parameter based on the q th order absolute moments. To test the estimator, we introduce two types of stochastic processes within the framework of the multiplicative log-normal model. One is a sequence of independent and identically distributed random variables. The other is a log-normal cascade-type multiplicative process. By analyzing the numerically generated time series, we demonstrate that the estimator can reliably determine the theoretical value of the non-Gaussian parameter. Scale dependence of the non-Gaussian parameter in multiplicative log-normal models is also studied, both analytically and numerically. As an application of the estimator, we demonstrate that non-Gaussian PDF's observed in the S&P500 index fluctuations are well described by the multiplicative log-normal model.
我们研究了乘性对数正态模型的非高斯概率密度函数(PDF),其中考虑了高斯分布和对数正态分布随机变量的乘法。为了描述充分发展的湍流中两点之间速度差的PDF,非高斯PDF模型最初由卡斯坦(Castaing)提出[《物理D》46, 177 (1990)]。在实际应用中,通过调整单个非高斯参数,用卡斯坦模型来近似实验PDF,该参数对应于模型中对数正态分布变量的对数方差。在本文中,我们基于q阶绝对矩提出了一种非高斯参数估计器。为了测试该估计器,我们在乘性对数正态模型框架内引入了两种类型的随机过程。一种是独立同分布随机变量序列。另一种是对数正态级联型乘性过程。通过分析数值生成的时间序列,我们证明该估计器能够可靠地确定非高斯参数的理论值。还通过解析和数值方法研究了乘性对数正态模型中非高斯参数的尺度依赖性。作为该估计器的一个应用,我们证明标准普尔500指数波动中观察到的非高斯PDF可以用乘性对数正态模型很好地描述。