Suppr超能文献

Strain localization driven by structural relaxation in sheared amorphous solids.

作者信息

Jagla E A

机构信息

Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica, 8400 Bariloche, Argentina.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 2):046119. doi: 10.1103/PhysRevE.76.046119. Epub 2007 Oct 26.

Abstract

A two dimensional amorphous material is modeled as an assembly of mesoscopic elemental pieces coupled together to form an elastically coherent structure. Plasticity is introduced as the existence of different minima in the energy landscape of the elemental constituents. Upon the application of an external strain rate, the material shears through the appearance of elemental slip events with quadrupolar symmetry. When the energy landscape of the elemental constituents is kept fixed, the slip events distribute uniformly throughout the sample, producing on average a uniform deformation. However, when the energy landscape at different spatial positions can be rearranged dynamically to account for structural relaxation, the system develops inhomogeneous deformation in the form of shear bands at low shear rates, and stick-slip-like motion at the shear bands for the lowest shear rates. The origin of strain localization is traced back to a region of negative correlation between strain rate and stress, which appears only if structural relaxation is present. The model also reproduces other well known effects in the rheology of amorphous materials, as a stress peak in a strain rate controlled experiment staring from rest, and the increase of the maximum of this peak with sample age.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验