Suppr超能文献

利用产品成分预测冷冻过程中冷冻食品的特性。

Prediction of frozen food properties during freezing using product composition.

作者信息

Boonsupthip W, Heldman D R

机构信息

Dept. of Food Science and Technology, Food Engineering Major, Faculty of Agro-Industry, Kasetsart Univ., 50 Paholyothin Rd., Jatujak, Bangkok 10900, Thailand.

出版信息

J Food Sci. 2007 Jun;72(5):E254-63. doi: 10.1111/j.1750-3841.2007.00364.x.

Abstract

Frozen water fraction (FWF), as a function of temperature, is an important parameter for use in the design of food freezing processes. An FWF-prediction model, based on concentrations and molecular weights of specific product components, has been developed. Published food composition data were used to determine the identity and composition of key components. The model proposed in this investigation had been verified using published experimental FWF data and initial freezing temperature data, and by comparison to outputs from previously published models. It was found that specific food components with significant influence on freezing temperature depression of food products included low molecular weight water-soluble compounds with molality of 50 micromol per 100 g food or higher. Based on an analysis of 200 high-moisture food products, nearly 45% of the experimental initial freezing temperature data were within an absolute difference (AD) of +/- 0.15 degrees C and standard error (SE) of +/- 0.65 degrees C when compared to values predicted by the proposed model. The predicted relationship between temperature and FWF for all analyzed food products provided close agreements with experimental data (+/- 0.06 SE). The proposed model provided similar prediction capability for high- and intermediate-moisture food products. In addition, the proposed model provided statistically better prediction of initial freezing temperature and FWF than previous published models.

摘要

作为温度函数的冷冻水分数(FWF)是食品冷冻过程设计中使用的一个重要参数。基于特定产品成分的浓度和分子量,开发了一种FWF预测模型。已发布的食品成分数据用于确定关键成分的特性和组成。本研究中提出的模型已使用已发布的实验FWF数据和初始冷冻温度数据进行了验证,并与先前发布的模型的输出结果进行了比较。结果发现,对食品冷冻温度降低有显著影响的特定食品成分包括每100克食品中摩尔浓度为50微摩尔或更高的低分子量水溶性化合物。基于对200种高水分食品的分析,与所提出模型预测的值相比,近45%的实验初始冷冻温度数据的绝对差值(AD)在±0.15℃以内,标准误差(SE)在±0.65℃以内。所有分析食品的温度与FWF之间的预测关系与实验数据高度吻合(±0.06 SE)。所提出的模型对高水分和中等水分食品具有相似的预测能力。此外,与先前发布的模型相比,所提出的模型在初始冷冻温度和FWF的预测方面具有统计学上更好的表现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验