Suppr超能文献

蛋白质折叠的死胡同:淀粉样纤维形成的热力学原理

Dead-end street of protein folding: thermodynamic rationale of amyloid fibril formation.

作者信息

Perczel András, Hudáky Péter, Pálfi Villö K

机构信息

Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös LorAnd University, Budapest, Hungary.

出版信息

J Am Chem Soc. 2007 Dec 5;129(48):14959-65. doi: 10.1021/ja0747122. Epub 2007 Nov 13.

Abstract

An increasing number of diseases, including Alzheimer's, have been found to be a result of the formation of amyloid aggregates that are practically independent of the original primary sequence of the protein(s). (Eakin, C. M.; Berman, A. J.; Miranker, A. D. Nat. Struct. Mol. Biol. 2006, 13, 202-208.) Consequently, the driving force of the transformation from original to disordered amyloid fold is expected to lie in the protein backbone, which is common to all proteins. (Nelson, R.; Sawaya, M. R.; Balbirnie, M.; Madsen, A. O.; Riekel, C.; Grothe, R.; Eisenberg, D. Nature 2005, 435, 773-778. Wright, C. F.; Teichmann, S. A.; Clarke, J.; Dobson, C. M. Nature 2005, 438, 878-881.) However, the exact explanation for the existence of such a "dead-end" structure is still unknown. Using systematic first principle calculations on carefully selected but large enough systems modeling the protein backbone we show that the beta-pleated sheet structure, the building block of amyloid fibers, is the thermodynamically most stable supramolecular arrangement of all the possible peptide dimers and oligomers both in vacuum and in aqueous environments. Even in a crystalline state (periodical, tight peptide attechment), the beta-pleated sheet assembly remains the most stable superstructure. The present theoretical study provides a quantum-level explanation for why proteins can take the amyloid state when local structural preferences jeopardize the functional native global fold and why it is a beta-pleated sheetlike structure they prefer.

摘要

越来越多的疾病,包括阿尔茨海默病,已被发现是淀粉样聚集体形成的结果,这些聚集体实际上与蛋白质的原始一级序列无关。(伊金,C.M.;伯曼,A.J.;米兰克,A.D.《自然·结构与分子生物学》2006年,13卷,202 - 208页。)因此,从原始状态转变为无序淀粉样折叠的驱动力预计在于蛋白质主链,这是所有蛋白质共有的。(尼尔森,R.;萨瓦亚,M.R.;巴尔比尼,M.;马德森,A.O.;里克埃尔,C.;格罗特,R.;艾森伯格,D.《自然》2005年,435卷,773 - 778页。赖特,C.F.;泰希曼,S.A.;克拉克,J.;多布森,C.M.《自然》2005年,438卷,878 - 881页。)然而,对于这种“死胡同”结构存在的确切解释仍然未知。通过对精心挑选且足够大的模拟蛋白质主链的系统进行系统的第一性原理计算,我们表明β - 折叠片层结构,即淀粉样纤维的构建单元,在真空和水环境中都是所有可能的肽二聚体和寡聚体中热力学上最稳定的超分子排列。即使在晶体状态(周期性、紧密的肽附着)下,β - 折叠片层组装仍然是最稳定的超结构。本理论研究为当局部结构偏好危及功能性天然全局折叠时蛋白质为何能呈现淀粉样状态以及为何它们偏好β - 折叠片状结构提供了量子水平的解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验