Suppr超能文献

MORPH:概率比对与顺式调控模块的隐马尔可夫模型相结合。

MORPH: probabilistic alignment combined with hidden Markov models of cis-regulatory modules.

作者信息

Sinha Saurabh, He Xin

机构信息

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.

出版信息

PLoS Comput Biol. 2007 Nov;3(11):e216. doi: 10.1371/journal.pcbi.0030216. Epub 2007 Sep 24.

Abstract

The discovery and analysis of cis-regulatory modules (CRMs) in metazoan genomes is crucial for understanding the transcriptional control of development and many other biological processes. Cross-species sequence comparison holds much promise for improving computational prediction of CRMs, for elucidating their binding site composition, and for understanding how they evolve. Current methods for analyzing orthologous CRMs from multiple species rely upon sequence alignments produced by off-the-shelf alignment algorithms, which do not exploit the presence of binding sites in the sequences. We present here a unified probabilistic framework, called MORPH, that integrates the alignment task with binding site predictions, allowing more robust CRM analysis in two species. The framework sums over all possible alignments of two sequences, thus accounting for alignment ambiguities in a natural way. We perform extensive tests on orthologous CRMs from two moderately diverged species Drosophila melanogaster and D. mojavensis, to demonstrate the advantages of the new approach. We show that it can overcome certain computational artifacts of traditional alignment tools and provide a different, likely more accurate, picture of cis-regulatory evolution than that obtained from existing methods. The burgeoning field of cis-regulatory evolution, which is amply supported by the availability of many related genomes, is currently thwarted by the lack of accurate alignments of regulatory regions. Our work will fill in this void and enable more reliable analysis of CRM evolution.

摘要

后生动物基因组中顺式调控模块(CRM)的发现与分析对于理解发育及许多其他生物学过程的转录调控至关重要。跨物种序列比较在改进CRM的计算预测、阐明其结合位点组成以及理解其进化方式等方面具有很大潜力。目前用于分析多个物种直系同源CRM的方法依赖于现成比对算法生成的序列比对,而这些算法并未利用序列中结合位点的存在。我们在此提出一个统一的概率框架,称为MORPH,它将比对任务与结合位点预测相结合,从而能在两个物种中进行更可靠的CRM分析。该框架对两条序列的所有可能比对进行求和,从而以自然的方式考虑了比对的模糊性。我们对来自两个中等分化物种黑腹果蝇和莫哈韦果蝇的直系同源CRM进行了广泛测试,以证明新方法的优势。我们表明,它可以克服传统比对工具的某些计算假象,并提供与现有方法不同的、可能更准确的顺式调控进化图景。顺式调控进化这一新兴领域得到了许多相关基因组数据的充分支持,但目前因缺乏调控区域的准确比对而受到阻碍。我们的工作将填补这一空白,并使对CRM进化的更可靠分析成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9294/2098846/31bc3c57473a/pcbi.0030216.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验