Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA.
Methods. 2013 Jul 15;62(1):91-8. doi: 10.1016/j.ymeth.2013.05.014. Epub 2013 Jun 1.
Synthetic biology offers novel opportunities for elucidating transcriptional regulatory mechanisms and enhancer logic. Complex cis-regulatory sequences--like the ones driving expression of the Drosophila even-skipped gene--have proven difficult to design from existing knowledge, presumably due to the large number of protein-protein interactions needed to drive the correct expression patterns of genes in multicellular organisms. This work discusses two novel computational methods for the custom design of enhancers that employ a sophisticated, empirically validated transcriptional model, optimization algorithms, and synthetic biology. These synthetic elements have both utilitarian and academic value, including improving existing regulatory models as well as evolutionary questions. The first method involves the use of simulated annealing to explore the sequence space for synthetic enhancers whose expression output fit a given search criterion. The second method uses a novel optimization algorithm to find functionally accessible pathways between two enhancer sequences. These paths describe a set of mutations wherein the predicted expression pattern does not significantly vary at any point along the path. Both methods rely on a predictive mathematical framework that maps the enhancer sequence space to functional output.
合成生物学为阐明转录调控机制和增强子逻辑提供了新的机会。复杂的顺式调控序列——如驱动果蝇 even-skipped 基因表达的那些序列——已经被证明难以从现有知识中设计出来,这可能是由于在多细胞生物中驱动基因的正确表达模式需要大量的蛋白质-蛋白质相互作用。这项工作讨论了两种新的计算方法,用于定制设计增强子,这些方法采用了复杂的、经过经验验证的转录模型、优化算法和合成生物学。这些合成元件具有实用和学术价值,包括改进现有的调控模型和进化问题。第一种方法涉及使用模拟退火来探索合成增强子的序列空间,这些增强子的表达输出符合给定的搜索标准。第二种方法使用一种新颖的优化算法来寻找两个增强子序列之间功能可访问的途径。这些路径描述了一组突变,其中在路径上的任何一点,预测的表达模式都不会有显著的变化。这两种方法都依赖于一个预测的数学框架,将增强子序列空间映射到功能输出。