Boutroy Stephanie, Van Rietbergen Bert, Sornay-Rendu Elisabeth, Munoz Francoise, Bouxsein Mary L, Delmas Pierre D
INSERM Research Unit 831 and Université de Lyon, Lyon, France.
J Bone Miner Res. 2008 Mar;23(3):392-9. doi: 10.1359/jbmr.071108.
BMD, bone microarchitecture, and bone mechanical properties assessed in vivo by finite element analysis were associated with wrist fracture in postmenopausal women.
Many fractures occur in individuals with normal BMD. Assessment of bone mechanical properties by finite element analysis (FEA) may improve identification of those at high risk for fracture.
We used HR-pQCT to assess volumetric bone density, microarchitecture, and microFE-derived bone mechanical properties at the radius in 33 postmenopausal women with a prior history of fragility wrist fracture and 33 age-matched controls from the OFELY cohort. Radius areal BMD (aBMD) was also measured by DXA. Associations between density, microarchitecture, mechanical parameters and fracture status were evaluated by univariate logistic regression analysis and expressed as ORs (with 95% CIs) per SD change. We also conducted a principal components (PCs) analysis (PCA) to reduce the number of parameters and study their association (OR) with wrist fracture.
Areal and volumetric densities, cortical thickness, trabecular number, and mechanical parameters such as estimated failure load, stiffness, and the proportion of load carried by the trabecular bone at the distal and proximal sites were associated with wrist fracture (p < 0.05). The PCA revealed five independent components that jointly explained 86.2% of the total variability of bone characteristics. The first PC included FE-estimated failure load, areal and volumetric BMD, and cortical thickness, explaining 51% of the variance with an OR for wrist fracture = 2.49 (95% CI, 1.32-4.72). Remaining PCs did not include any density parameters. The second PC included trabecular architecture, explaining 12% of the variance, with an OR = 1.82 (95% CI, 0.94-3.52). The third PC included the proportion of the load carried by cortical versus trabecular bone, assessed by FEA, explaining 9% of the variance, and had an OR = 1.61 (95% CI, 0.94-2.77). Thus, the proportion of load carried by cortical versus trabecular bone seems to be associated with wrist fracture independently of BMD and microarchitecture (included in the first and second PC, respectively).
These results suggest that bone mechanical properties assessed by microFE may provide information about skeletal fragility and fracture risk not assessed by BMD or architecture measurements alone and are therefore likely to enhance the prediction of wrist fracture risk.
通过有限元分析在体内评估的骨密度(BMD)、骨微结构和骨力学性能与绝经后女性手腕骨折有关。
许多骨折发生在骨密度正常的个体中。通过有限元分析(FEA)评估骨力学性能可能会改善对骨折高危人群的识别。
我们使用高分辨率外周定量CT(HR-pQCT)评估了33名有脆性手腕骨折既往史的绝经后女性和来自OFELY队列的33名年龄匹配的对照者桡骨的体积骨密度、微结构以及微有限元衍生的骨力学性能。还通过双能X线吸收法(DXA)测量了桡骨面积骨密度(aBMD)。通过单因素逻辑回归分析评估密度、微结构、力学参数与骨折状态之间的关联,并以每标准差变化的比值比(OR)(及其95%置信区间)表示。我们还进行了主成分分析(PCA)以减少参数数量并研究它们与手腕骨折的关联(OR)。
面积和体积密度、皮质厚度、小梁数量以及力学参数,如估计的破坏载荷、刚度以及远端和近端部位小梁骨承载的载荷比例与手腕骨折有关(p<0.05)。主成分分析揭示了五个独立成分,它们共同解释了骨特征总变异性的86.2%。第一个主成分包括有限元估计的破坏载荷、面积和体积骨密度以及皮质厚度,解释了51%的方差,手腕骨折的OR为2.49(95%置信区间为1.32 - 4.72)。其余主成分不包括任何密度参数。第二个主成分包括小梁结构,解释了12%的方差,OR = 1.82(95%置信区间为0.94 - 3.52)。第三个主成分包括通过有限元分析评估的皮质骨与小梁骨承载的载荷比例,解释了9%的方差,OR = 1.61(95%置信区间为0.94 - 2.77)。因此,皮质骨与小梁骨承载载荷的比例似乎独立于骨密度和微结构(分别包含在第一个和第二个主成分中)与手腕骨折有关。
这些结果表明,通过微有限元评估的骨力学性能可能提供有关骨骼脆性和骨折风险的信息,而这些信息不能仅通过骨密度或结构测量来评估,因此可能会增强对手腕骨折风险的预测。