Cremades Nunilo, Bueno Marta, Neira José Luis, Velázquez-Campoy Adrián, Sancho Javier
Biocomputation and Complex Systems Physics Institute, Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragosa, Zaragosa, Spain.
J Biol Chem. 2008 Feb 1;283(5):2883-95. doi: 10.1074/jbc.M705677200. Epub 2007 Nov 11.
Flavodoxin is an essential protein for Helicobacter pylori, a pathogen living in the very acidic environment of the gastric tract and responsible for several diseases. We report the conformational stability of the protein in neutral and acidic pH. The apoprotein remains native between pH 12 and 5 and adopts a monomeric molten globule conformation at more acidic pH values. The equilibrium unfolding in urea appears two-state for either conformation, but the native one coexists with a hidden equilibrium intermediate of very similar properties. The stability of H. pylori apoflavodoxin is higher than that of the Anabaena homologue throughout the entire pH interval, which may be related to better charge compensation. H. pylori apoflavodoxin is strongly stabilized by its FMN cofactor. A global analysis of apo- and holoflavodoxin equilibrium unfolding, with and without excess FMN, indicates that the cofactor only binds to the native state. Some physical-chemical properties of the protein may represent an adaptation to the acidic environment. Unlike the apoflavodoxin from Anabaena, which becomes highly insoluble at pH 5.0, that from H. pylori remains soluble to at least 40 microm. This fact, together with the high stability of the apoprotein at this low pH that can arise in the bacteria cytoplasm, seems useful to allow newly synthesized apoflavodoxin molecules to fold and remain soluble to accomplish cofactor binding, which in turn increases the stability. Also, whenever the cytoplasmic pH drops to 5, preexisting flavodoxin molecules will remain folded and soluble and will retain the FMN cofactor, thus remaining functional.
黄素氧还蛋白是幽门螺杆菌的一种必需蛋白质,幽门螺杆菌是一种生活在胃部极酸性环境中的病原体,可引发多种疾病。我们报告了该蛋白质在中性和酸性pH条件下的构象稳定性。脱辅基蛋白在pH值为12至5之间保持天然构象,在更酸性的pH值下则采用单体熔融球状体构象。在尿素中进行的平衡去折叠对于两种构象而言均呈现两态,但天然构象与一种性质非常相似的隐藏平衡中间体共存。在整个pH区间内,幽门螺杆菌脱辅基黄素氧还蛋白的稳定性均高于鱼腥藻同源物,这可能与更好的电荷补偿有关。幽门螺杆菌脱辅基黄素氧还蛋白被其FMN辅因子强烈稳定。对有无过量FMN时脱辅基和全黄素氧还蛋白平衡去折叠的整体分析表明,辅因子仅与天然状态结合。该蛋白质的一些物理化学性质可能代表了对酸性环境的一种适应。与在pH 5.0时变得高度不溶的鱼腥藻脱辅基黄素氧还蛋白不同,幽门螺杆菌的脱辅基黄素氧还蛋白在至少40微摩尔时仍保持可溶。这一事实,连同脱辅基蛋白在细菌细胞质中可能出现的这种低pH下的高稳定性,似乎有助于使新合成的脱辅基黄素氧还蛋白分子折叠并保持可溶以完成辅因子结合,进而增加稳定性。此外,每当细胞质pH降至5时,预先存在的黄素氧还蛋白分子将保持折叠和可溶状态,并保留FMN辅因子,从而保持功能。