Smith Jarrod A, Vanoye Carlos G, George Alfred L, Meiler Jens, Sanders Charles R
Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-8725, USA.
Biochemistry. 2007 Dec 11;46(49):14141-52. doi: 10.1021/bi701597s. Epub 2007 Nov 14.
Mutations in the human voltage-gated potassium channel KCNQ1 are associated with predisposition to deafness and various cardiac arrhythmia syndromes including congenital long QT syndrome, familial atrial fibrillation, and sudden infant death syndrome. In this work 3-D structural models were developed for both the open and closed states of human KCNQ1 to facilitate structurally based hypotheses regarding mutation-phenotype relationships. The KCNQ1 open state was modeled using Rosetta in conjunction with Molecular Operating Environment software, and is based primarily on the recently determined open state structure of rat Kv1.2 (Long, S. B., et al. (2005) Science 309, 897-903). The closed state model for KCNQ1 was developed based on the crystal structures of bacterial potassium channels and the closed state model for Kv1.2 of Yarov-Yarovoy et al. ((2006) Proc. Natl. Acad. Sci. U.S.A. 103, 7292-7207). Using the new models for KCNQ1, we generated a database for the location and predicted residue-residue interactions for more than 85 disease-linked sites in both open and closed states. These data can be used to generate structure-based hypotheses for disease phenotypes associated with each mutation. The potential utility of these models and the database is exemplified by the surprising observation that four of the five known mutations in KCNQ1 that are associated with gain-of-function KCNQ1 defects are predicted to share a common interface in the open state structure between the S1 segment of the voltage sensor in one subunit and both the S5 segment and top of the pore helix from another subunit. This interface evidently plays an important role in channel gating.
人类电压门控钾通道KCNQ1的突变与耳聋易感性以及多种心律失常综合征相关,包括先天性长QT综合征、家族性心房颤动和婴儿猝死综合征。在这项研究中,我们构建了人类KCNQ1开放态和关闭态的三维结构模型,以促进基于结构的关于突变-表型关系的假设。KCNQ1开放态模型使用Rosetta结合分子操作环境软件构建,主要基于最近确定的大鼠Kv1.2的开放态结构(Long, S. B., 等人(2005年)《科学》309, 897 - 903)。KCNQ1的关闭态模型基于细菌钾通道的晶体结构以及Yarov - Yarovoy等人构建的Kv1.2关闭态模型((2006年)《美国国家科学院院刊》103, 7292 - 7207)。利用新的KCNQ1模型,我们生成了一个数据库,记录了开放态和关闭态中85多个疾病相关位点的位置以及预测的残基-残基相互作用。这些数据可用于生成与每个突变相关的疾病表型的基于结构的假设。这些模型和数据库的潜在效用通过一个惊人的观察得到例证,即与功能获得性KCNQ1缺陷相关的KCNQ1中五个已知突变中的四个,预计在一个亚基电压传感器的S1段与另一个亚基的S5段和孔螺旋顶部之间的开放态结构中共享一个共同界面。这个界面显然在通道门控中起重要作用。