Suppr超能文献

KCNQ1电压门控钾通道的结构模型。

Structural models for the KCNQ1 voltage-gated potassium channel.

作者信息

Smith Jarrod A, Vanoye Carlos G, George Alfred L, Meiler Jens, Sanders Charles R

机构信息

Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-8725, USA.

出版信息

Biochemistry. 2007 Dec 11;46(49):14141-52. doi: 10.1021/bi701597s. Epub 2007 Nov 14.

Abstract

Mutations in the human voltage-gated potassium channel KCNQ1 are associated with predisposition to deafness and various cardiac arrhythmia syndromes including congenital long QT syndrome, familial atrial fibrillation, and sudden infant death syndrome. In this work 3-D structural models were developed for both the open and closed states of human KCNQ1 to facilitate structurally based hypotheses regarding mutation-phenotype relationships. The KCNQ1 open state was modeled using Rosetta in conjunction with Molecular Operating Environment software, and is based primarily on the recently determined open state structure of rat Kv1.2 (Long, S. B., et al. (2005) Science 309, 897-903). The closed state model for KCNQ1 was developed based on the crystal structures of bacterial potassium channels and the closed state model for Kv1.2 of Yarov-Yarovoy et al. ((2006) Proc. Natl. Acad. Sci. U.S.A. 103, 7292-7207). Using the new models for KCNQ1, we generated a database for the location and predicted residue-residue interactions for more than 85 disease-linked sites in both open and closed states. These data can be used to generate structure-based hypotheses for disease phenotypes associated with each mutation. The potential utility of these models and the database is exemplified by the surprising observation that four of the five known mutations in KCNQ1 that are associated with gain-of-function KCNQ1 defects are predicted to share a common interface in the open state structure between the S1 segment of the voltage sensor in one subunit and both the S5 segment and top of the pore helix from another subunit. This interface evidently plays an important role in channel gating.

摘要

人类电压门控钾通道KCNQ1的突变与耳聋易感性以及多种心律失常综合征相关,包括先天性长QT综合征、家族性心房颤动和婴儿猝死综合征。在这项研究中,我们构建了人类KCNQ1开放态和关闭态的三维结构模型,以促进基于结构的关于突变-表型关系的假设。KCNQ1开放态模型使用Rosetta结合分子操作环境软件构建,主要基于最近确定的大鼠Kv1.2的开放态结构(Long, S. B., 等人(2005年)《科学》309, 897 - 903)。KCNQ1的关闭态模型基于细菌钾通道的晶体结构以及Yarov - Yarovoy等人构建的Kv1.2关闭态模型((2006年)《美国国家科学院院刊》103, 7292 - 7207)。利用新的KCNQ1模型,我们生成了一个数据库,记录了开放态和关闭态中85多个疾病相关位点的位置以及预测的残基-残基相互作用。这些数据可用于生成与每个突变相关的疾病表型的基于结构的假设。这些模型和数据库的潜在效用通过一个惊人的观察得到例证,即与功能获得性KCNQ1缺陷相关的KCNQ1中五个已知突变中的四个,预计在一个亚基电压传感器的S1段与另一个亚基的S5段和孔螺旋顶部之间的开放态结构中共享一个共同界面。这个界面显然在通道门控中起重要作用。

相似文献

1
Structural models for the KCNQ1 voltage-gated potassium channel.
Biochemistry. 2007 Dec 11;46(49):14141-52. doi: 10.1021/bi701597s. Epub 2007 Nov 14.
2
Upgraded molecular models of the human KCNQ1 potassium channel.
PLoS One. 2019 Sep 13;14(9):e0220415. doi: 10.1371/journal.pone.0220415. eCollection 2019.
3
PUFA stabilizes a conductive state of the selectivity filter in IKs channels.
Elife. 2024 Oct 31;13:RP95852. doi: 10.7554/eLife.95852.
4
Cryo-EM Structure of a KCNQ1/CaM Complex Reveals Insights into Congenital Long QT Syndrome.
Cell. 2017 Jun 1;169(6):1042-1050.e9. doi: 10.1016/j.cell.2017.05.019.
5
KCNQ1 channels voltage dependence through a voltage-dependent binding of the S4-S5 linker to the pore domain.
J Biol Chem. 2011 Jan 7;286(1):707-16. doi: 10.1074/jbc.M110.146324. Epub 2010 Oct 12.
6
Structure of KCNE1 and implications for how it modulates the KCNQ1 potassium channel.
Biochemistry. 2008 Aug 5;47(31):7999-8006. doi: 10.1021/bi800875q. Epub 2008 Jul 9.
7
Mechanisms by which atrial fibrillation-associated mutations in the S1 domain of KCNQ1 slow deactivation of IKs channels.
J Physiol. 2008 Sep 1;586(17):4179-91. doi: 10.1113/jphysiol.2008.157511. Epub 2008 Jul 3.
9
A comprehensive structural model for the human KCNQ1/KCNE1 ion channel.
J Mol Graph Model. 2017 Nov;78:26-47. doi: 10.1016/j.jmgm.2017.09.019. Epub 2017 Sep 29.
10
Dysfunctional potassium channel subunit interaction as a novel mechanism of long QT syndrome.
Heart Rhythm. 2013 May;10(5):728-37. doi: 10.1016/j.hrthm.2012.12.033. Epub 2013 Jan 2.

引用本文的文献

1
Dynamic protein-protein interactions of KCNQ1 and KCNE1 measured by EPR line shape analysis.
Biochim Biophys Acta Biomembr. 2024 Oct;1866(7):184377. doi: 10.1016/j.bbamem.2024.184377. Epub 2024 Aug 3.
3
Purification and membrane interactions of human KCNQ1 potassium ion channel.
Biochim Biophys Acta Biomembr. 2022 Nov 1;1864(11):184010. doi: 10.1016/j.bbamem.2022.184010. Epub 2022 Jul 21.
5
7
Compound Heterozygous Mutations Causing Recessive Romano-Ward Syndrome: Functional Characterization by Mutant Co-expression.
Front Cardiovasc Med. 2021 Feb 22;8:625449. doi: 10.3389/fcvm.2021.625449. eCollection 2021.
8
Structural Mechanism of ω-Currents in a Mutated Kv7.2 Voltage Sensor Domain from Molecular Dynamics Simulations.
J Chem Inf Model. 2021 Mar 22;61(3):1354-1367. doi: 10.1021/acs.jcim.0c01407. Epub 2021 Feb 11.
10
Physical and functional interaction sites in cytoplasmic domains of KCNQ1 and KCNE1 channel subunits.
Am J Physiol Heart Circ Physiol. 2020 Feb 1;318(2):H212-H222. doi: 10.1152/ajpheart.00459.2019. Epub 2019 Dec 13.

本文引用的文献

1
Structural insight into KCNQ (Kv7) channel assembly and channelopathy.
Neuron. 2007 Mar 1;53(5):663-75. doi: 10.1016/j.neuron.2007.02.010.
2
Prevalence of long-QT syndrome gene variants in sudden infant death syndrome.
Circulation. 2007 Jan 23;115(3):361-7. doi: 10.1161/CIRCULATIONAHA.106.658021. Epub 2007 Jan 8.
3
Secondary structure of a KCNE cytoplasmic domain.
J Gen Physiol. 2006 Dec;128(6):721-9. doi: 10.1085/jgp.200609657.
4
Voltage sensor conformations in the open and closed states in ROSETTA structural models of K(+) channels.
Proc Natl Acad Sci U S A. 2006 May 9;103(19):7292-7. doi: 10.1073/pnas.0602350103. Epub 2006 Apr 28.
5
Physically realistic homology models built with ROSETTA can be more accurate than their templates.
Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5361-6. doi: 10.1073/pnas.0509355103. Epub 2006 Mar 27.
7
Multipass membrane protein structure prediction using Rosetta.
Proteins. 2006 Mar 1;62(4):1010-25. doi: 10.1002/prot.20817.
8
Interaction of KCNE subunits with the KCNQ1 K+ channel pore.
J Physiol. 2006 Feb 1;570(Pt 3):455-67. doi: 10.1113/jphysiol.2005.100644. Epub 2005 Nov 24.
9
The KCNQ1 potassium channel: from gene to physiological function.
Physiology (Bethesda). 2005 Dec;20:408-16. doi: 10.1152/physiol.00031.2005.
10
The Amber biomolecular simulation programs.
J Comput Chem. 2005 Dec;26(16):1668-88. doi: 10.1002/jcc.20290.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验