Khare Krishnacharya, Herminghaus Stephan, Baret Jean-Christophe, Law Bruce M, Brinkmann Martin, Seemann Ralf
Max Planck Institute for Dynamics and Self-Organization, D-37018 Göttingen, Germany.
Langmuir. 2007 Dec 18;23(26):12997-3006. doi: 10.1021/la701899u. Epub 2007 Nov 15.
The morphology of liquids confined to linear micrometer-sized grooves of triangular and rectangular cross section is studied for different substrate wettabilities. Depending on the wettability and exact geometry, either droplike morphologies or elongated liquid filaments represent the generic equilibrium structures on the substrate. Upon changing the apparent contact angle of aqueous drops by electrowetting, we are able to trigger the transition between elongated filaments and droplets. In the case of rectangular grooves, this transition allows us to advance liquid reversibly into the grooves while crossing a certain threshold contact angle. In triangular grooves, however, these elongated filaments undergo a dynamic instability when the contact angle returns to a value above the filling threshold. The different filling and drainage behavior is explained by specific aspects of the triangular and rectangular groove geometry.
针对不同的基底润湿性,研究了限制在三角形和矩形横截面的线性微米级凹槽中的液体形态。根据润湿性和精确的几何形状,液滴状形态或拉长的液丝代表基底上的一般平衡结构。通过电润湿改变水滴的表观接触角时,我们能够触发拉长的细丝和液滴之间的转变。在矩形凹槽的情况下,这种转变使我们能够在超过某个阈值接触角时将液体可逆地推进到凹槽中。然而,在三角形凹槽中,当接触角回到高于填充阈值的值时,这些拉长的细丝会经历动态不稳定性。三角形和矩形凹槽几何形状的特定方面解释了不同的填充和排水行为。