Torres Logan J, Weislogel Mark M
IRPI LLC, Wilsonville, OR, USA.
Portland State University, Portland, OR, USA.
NPJ Microgravity. 2021 Dec 17;7(1):52. doi: 10.1038/s41526-021-00182-4.
When confined within containers or conduits, drops and bubbles migrate to regions of minimum energy by the combined effects of surface tension, surface wetting, system geometry, and initial conditions. Such capillary phenomena are exploited for passive phase separation operations in micro-fluidic devices on earth and macro-fluidic devices aboard spacecraft. Our study focuses on the migration and ejection of large inertial-capillary drops confined between tilted planar hydrophobic substrates (a.k.a., wedges). In our experiments, the brief nearly weightless environment of a 2.1 s drop tower allows for the study of such capillary dominated behavior for up to 10 mL water drops with migration velocities up to 12 cm/s. We control ejection velocities as a function of drop volume, substrate tilt angle, initial confinement, and fluid properties. We then demonstrate how such geometries may be employed as passive no-moving-parts droplet generators for very large drop dynamics investigations. The method is ideal for hand-held non-oscillatory 'droplet' generation in low-gravity environments.
当液滴和气泡被限制在容器或管道内时,在表面张力、表面润湿性、系统几何形状和初始条件的共同作用下,它们会迁移到能量最小的区域。这种毛细现象被用于地球上微流体装置和航天器上宏流体装置的被动相分离操作。我们的研究重点是限制在倾斜平面疏水基底(即楔形体)之间的大惯性毛细液滴的迁移和喷射。在我们的实验中,2.1秒的落塔提供的短暂近失重环境,使得我们能够研究这种毛细主导行为,研究对象为体积达10毫升、迁移速度高达12厘米/秒的水滴。我们根据液滴体积、基底倾斜角度、初始限制条件和流体性质来控制喷射速度。然后,我们展示了如何将这种几何结构用作无移动部件的被动液滴发生器,用于研究非常大的液滴动力学。该方法非常适合在低重力环境下进行手持式非振荡“液滴”生成。