Suppr超能文献

基于序列的模型在液相色谱-串联质谱蛋白质组学实验中预测肽段保留时间的不确定性量化

Quantification of uncertainty of peptide retention time predictions from a sequence-based model in LC-MS/MS proteomics experiments.

作者信息

Yanofsky Corey M, Kearney Robert E, Lesimple Souad, Bergeron John J M, Boismenu Daniel, Carrillo Brian, Bell Alexander W

机构信息

Department of Biomedical Engineering, McGill University, Montreal, QC, H3A 2B2, Canada.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:1221-4. doi: 10.1109/IEMBS.2007.4352517.

Abstract

In high-throughput mass spectrometry-based proteomics, it is necessary to employ separations to reduce sample complexity prior to mass spectrometric peptide identification. Interest has begun to focus on using information from separations to aid in peptide identification. One of the most common separations is reversed-phase liquid chromatography, in which peptides are separated on the basis of their chromatographic retention time. We apply a sequence-based model of peptide hydrophobicity to the problem of predicting peptide retention times, first fitting the model parameters using a large set of peptide identifications and then testing its predictions using a set of completely different peptide identifications. We demonstrate that not only does the model provide reasonably accurate predictions, it also provides a quantification of the uncertainty of its predictions. The model may therefore be used to provide checks on future tentative peptide identifications, even when the peptide species in question has never been observed before.

摘要

在基于高通量质谱的蛋白质组学中,在进行质谱肽段鉴定之前,有必要采用分离方法来降低样品的复杂性。人们已开始关注利用分离过程中的信息来辅助肽段鉴定。最常见的分离方法之一是反相液相色谱,其中肽段根据其色谱保留时间进行分离。我们将基于序列的肽段疏水性模型应用于预测肽段保留时间的问题,首先使用大量肽段鉴定数据拟合模型参数,然后使用一组完全不同的肽段鉴定数据测试其预测结果。我们证明,该模型不仅能提供相当准确的预测,还能对其预测的不确定性进行量化。因此,即使所涉及的肽段种类以前从未被观察到,该模型也可用于对未来暂定的肽段鉴定进行核查。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验