Yanofsky Corey M, Kearney Robert E, Lesimple Souad, Bergeron John J M, Boismenu Daniel, Carrillo Brian, Bell Alexander W
Department of Biomedical Engineering, McGill University, Montreal, QC, H3A 2B2, Canada.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:1221-4. doi: 10.1109/IEMBS.2007.4352517.
In high-throughput mass spectrometry-based proteomics, it is necessary to employ separations to reduce sample complexity prior to mass spectrometric peptide identification. Interest has begun to focus on using information from separations to aid in peptide identification. One of the most common separations is reversed-phase liquid chromatography, in which peptides are separated on the basis of their chromatographic retention time. We apply a sequence-based model of peptide hydrophobicity to the problem of predicting peptide retention times, first fitting the model parameters using a large set of peptide identifications and then testing its predictions using a set of completely different peptide identifications. We demonstrate that not only does the model provide reasonably accurate predictions, it also provides a quantification of the uncertainty of its predictions. The model may therefore be used to provide checks on future tentative peptide identifications, even when the peptide species in question has never been observed before.
在基于高通量质谱的蛋白质组学中,在进行质谱肽段鉴定之前,有必要采用分离方法来降低样品的复杂性。人们已开始关注利用分离过程中的信息来辅助肽段鉴定。最常见的分离方法之一是反相液相色谱,其中肽段根据其色谱保留时间进行分离。我们将基于序列的肽段疏水性模型应用于预测肽段保留时间的问题,首先使用大量肽段鉴定数据拟合模型参数,然后使用一组完全不同的肽段鉴定数据测试其预测结果。我们证明,该模型不仅能提供相当准确的预测,还能对其预测的不确定性进行量化。因此,即使所涉及的肽段种类以前从未被观察到,该模型也可用于对未来暂定的肽段鉴定进行核查。