Martín-Landrove Miguel, Pereira Demian, Caldeira María E, Itriago Salvador, Juliac María
Centro de Física Molecular y Médica, Escuela de Física, Facultad de Ciencias, Universidad Central de Venezuela, A.P. 47586, Caracas 1041-A, Venezuela.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:1306-9. doi: 10.1109/IEMBS.2007.4352537.
In this work, it is proposed a method for supervised characterization and classification of tumoral lesions in brain, based on the analysis of irregularities at the lesion contour on T2-weighted MR images. After the choice of a specific image, a segmentation procedure with a threshold selected from the histogram of intensity levels is applied to isolate the lesion, the contour is detected through the application of a gradient operator followed by a conversion to a "time series" using a chain code procedure. The correlation dimension is calculated and analyzed to discriminate between normal or malignant structures. The results found showed that it is possible to detect a differentiation between benign (cysts) and malignant (gliomas) lesions suggesting the potential of this method as a diagnostic tool.
在这项工作中,提出了一种基于对T2加权磁共振图像上病变轮廓不规则性的分析,对脑肿瘤病变进行监督表征和分类的方法。选择特定图像后,应用从强度水平直方图中选择阈值的分割程序来分离病变,通过应用梯度算子检测轮廓,然后使用链码程序将其转换为“时间序列”。计算并分析关联维数以区分正常或恶性结构。所发现的结果表明,有可能检测出良性(囊肿)和恶性(胶质瘤)病变之间的差异,这表明该方法作为一种诊断工具具有潜力。