Suppr超能文献

脑磁共振图像的关节肿瘤分割与密集可变形配准

Joint tumor segmentation and dense deformable registration of brain MR images.

作者信息

Parisot Sarah, Duffau Hugues, Chemouny Stéphane, Paragios Nikos

机构信息

Center for Visual Computing, Ecole Centrale Paris, Chatenay Malabry, France.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 2):651-8. doi: 10.1007/978-3-642-33418-4_80.

Abstract

In this paper we propose a novel graph-based concurrent registration and segmentation framework. Registration is modeled with a pairwise graphical model formulation that is modular with respect to the data and regularization term. Segmentation is addressed by adopting a similar graphical model, using image-based classification techniques while producing a smooth solution. The two problems are coupled via a relaxation of the registration criterion in the presence of tumors as well as a segmentation through a registration term aiming the separation between healthy and diseased tissues. Efficient linear programming is used to solve both problems simultaneously. State of the art results demonstrate the potential of our method on a large and challenging low-grade glioma data set.

摘要

在本文中,我们提出了一种新颖的基于图的并发配准与分割框架。配准采用成对图形模型公式进行建模,该公式在数据和正则化项方面具有模块化。分割通过采用类似的图形模型来解决,利用基于图像的分类技术,同时产生一个平滑的解决方案。这两个问题通过在存在肿瘤的情况下放宽配准标准以及通过旨在分离健康组织和患病组织的配准项进行分割来耦合。使用高效的线性规划同时解决这两个问题。最新结果证明了我们的方法在一个大型且具有挑战性的低级别胶质瘤数据集上的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验