Suppr超能文献

用于从基质辅助激光解吸电离飞行时间质谱中提取可靠蛋白质信号图谱的独立成分分析。

Independent component analysis for the extraction of reliable protein signal profiles from MALDI-TOF mass spectra.

作者信息

Mantini Dante, Petrucci Francesca, Del Boccio Piero, Pieragostino Damiana, Di Nicola Marta, Lugaresi Alessandra, Federici Giorgio, Sacchetta Paolo, Di Ilio Carmine, Urbani Andrea

机构信息

Istituto Tecnologie Avanzate Biomediche (ITAB), Fondazione G. d'Annunzio, Roma, Italy.

出版信息

Bioinformatics. 2008 Jan 1;24(1):63-70. doi: 10.1093/bioinformatics/btm533. Epub 2007 Nov 14.

Abstract

MOTIVATION

Independent component analysis (ICA) is a signal processing technique that can be utilized to recover independent signals from a set of their linear mixtures. We propose ICA for the analysis of signals obtained from large proteomics investigations such as clinical multi-subject studies based on MALDI-TOF MS profiling. The method is validated on simulated and experimental data for demonstrating its capability of correctly extracting protein profiles from MALDI-TOF mass spectra.

RESULTS

The comparison on peak detection with an open-source and two commercial methods shows its superior reliability in reducing the false discovery rate of protein peak masses. Moreover, the integration of ICA and statistical tests for detecting the differences in peak intensities between experimental groups allows to identify protein peaks that could be indicators of a diseased state. This data-driven approach demonstrates to be a promising tool for biomarker-discovery studies based on MALDI-TOF MS technology.

AVAILABILITY

The MATLAB implementation of the method described in the article and both simulated and experimental data are freely available at http://www.unich.it/proteomica/bioinf/.

摘要

动机

独立成分分析(ICA)是一种信号处理技术,可用于从一组线性混合信号中恢复独立信号。我们提出将ICA用于分析从大型蛋白质组学研究中获得的信号,例如基于基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)分析的临床多受试者研究。该方法在模拟数据和实验数据上得到验证,以证明其从MALDI-TOF质谱中正确提取蛋白质谱的能力。

结果

与一种开源方法和两种商业方法在峰检测方面的比较表明,它在降低蛋白质峰质量的错误发现率方面具有更高的可靠性。此外,将ICA与用于检测实验组之间峰强度差异的统计测试相结合,可以识别可能是疾病状态指标的蛋白质峰。这种数据驱动的方法被证明是基于MALDI-TOF MS技术的生物标志物发现研究的一种有前途的工具。

可用性

本文所述方法的MATLAB实现以及模拟数据和实验数据均可在http://www.unich.it/proteomica/bioinf/上免费获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验