Suppr超能文献

孤儿蛙皮素受体亚型3受体激动剂选择性和激活的分子基础。

Molecular basis for agonist selectivity and activation of the orphan bombesin receptor subtype 3 receptor.

作者信息

Gonzalez Nieves, Hocart Simon J, Portal-Nuñez Sergio, Mantey Samuel A, Nakagawa Tomoo, Zudaire Enrique, Coy David H, Jensen Robert T

机构信息

Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Heath, Building 10, Room 9C-103, 10 Center Dr. MSC 1804, Bethesda, MD 20892-1804, USA.

出版信息

J Pharmacol Exp Ther. 2008 Feb;324(2):463-74. doi: 10.1124/jpet.107.132332. Epub 2007 Nov 15.

Abstract

Bombesin receptor subtype (BRS)-3, a G-protein-coupled orphan receptor, shares 51% identity with the mammalian bombesin (Bn) receptor for gastrin-releasing peptide. There is increasing interest in BRS-3 because it is important in energy metabolism, glucose control, motility, and tumor growth. BRS-3 has low affinity for all Bn-related peptides; however, recently synthetic high-affinity agonists, [d-Tyr(6)/d-Phe(6),betaAla(11),Phe(13),Nle(14)]Bn-(6-14), were described, but they are nonselective for BRS-3 over other Bn receptors. Based on these peptides, three BRS-3-selective ligands were developed: peptide 2, [d-Tyr(6)(R)-3-amino-propionic acid(11),Phe(13),Nle(14)]Bn(6-14); peptide 3, [d-Tyr(6),(R)-Apa(11),4Cl-Phe(13),Nle(14)]Bn(6-14); and peptide 4, acetyl-Phe-Trp-Ala-His-(tBzl)-piperidine-3 carboxylic acid-Gly-Arg-NH(2). Their molecular determinants of selectivity/high affinity for BRS-3 are unknown. To address this, we used a chimeric/site mutagenesis approach. Substitution of extracellular domain 2 (EC2) of BRS-3 by the comparable gastrin-releasing peptide receptor (GRPR) domain decreased 26-, 4-, and 0-fold affinity for peptides 4, 3, and 2. Substitution of EC3 decreased affinity 4-, 11-, and 0-fold affinity for peptides 2 to 4. Ten-point mutations in the EC2 and adjacent transmembrane regions (TM2) 2 and 3 of BRS-3 were made. His107 (EC2-BRS-3) for lysine (H107K) (EC2-GRPR) decreased affinity (25- and 0-fold) for peptides 4 and 1; however, it could not be activated by either peptide. Its combination with Val101 (TM2), Gly112 (EC2), and Arg127 (TM3) resulted in complete loss-of-affinity of peptide 4. Receptor-modeling showed that each of these residues face inward and are within 4 A of the binding pocket. These results demonstrate that Val101, His107, Gly112, and Arg127 in the EC2/adjacent upper TMs of BRS-3 are critical for the high BRS3 selectivity of peptide 4. His107 in EC2 is essential for BRS-3 activation, suggesting amino-aromatic ligand/receptor interactions with peptide 4 are critical for both binding and activation. Furthermore, these result demonstrate that even though these three BRS-3-selective agonists were developed from the same template peptide, [d-Phe(6),betaAla(11),Phe(13),Nle(14)]Bn-(6-14), their molecular determinants of selectivity/high affinity varied considerably.

摘要

蛙皮素受体亚型(BRS)-3是一种G蛋白偶联孤儿受体,与哺乳动物胃泌素释放肽的蛙皮素(Bn)受体有51%的同源性。人们对BRS-3的兴趣与日俱增,因为它在能量代谢、血糖控制、运动和肿瘤生长中起着重要作用。BRS-3对所有与Bn相关的肽具有低亲和力;然而,最近描述了合成的高亲和力激动剂,[d-Tyr(6)/d-Phe(6),βAla(11),Phe(13),Nle(14)]Bn-(6-14),但它们对BRS-3的选择性不如对其他Bn受体。基于这些肽,开发了三种BRS-3选择性配体:肽2,[d-Tyr(6)(R)-3-氨基丙酸(11),Phe(13),Nle(14)]Bn(6-14);肽3,[d-Tyr(6),(R)-Apa(11),4Cl-Phe(13),Nle(14)]Bn(6-14);和肽4,乙酰-Phe-Trp-Ala-His-(tBzl)-哌啶-3-羧酸-Gly-Arg-NH(2)。它们对BRS-3选择性/高亲和力的分子决定因素尚不清楚。为了解决这个问题,我们采用了嵌合/位点诱变方法。用可比的胃泌素释放肽受体(GRPR)结构域替换BRS-3的细胞外结构域2(EC2),使对肽4、3和2的亲和力分别降低了26倍、4倍和0倍。替换EC3使对肽2至4的亲和力分别降低了4倍、11倍和0倍。在BRS-3的EC2和相邻跨膜区域(TM2)2和3中进行了十点突变。将His107(EC2-BRS-3)突变为赖氨酸(H107K)(EC2-GRPR)降低了对肽4和1的亲和力(25倍和0倍);然而,它不能被任何一种肽激活。它与Val101(TM2)、Gly112(EC2)和Arg127(TM3)的组合导致肽4完全丧失亲和力。受体建模表明,这些残基中的每一个都面向内部,且在结合口袋的4埃范围内。这些结果表明,BRS-3的EC2/相邻上部跨膜区中的Val101、His107、Gly112和Arg127对肽4的高BRS3选择性至关重要。EC2中的His107对BRS-3激活至关重要,表明氨基-芳香族配体/受体与肽4的相互作用对结合和激活都至关重要。此外,这些结果表明,尽管这三种BRS-3选择性激动剂是从同一模板肽[d-Phe(6),βAla(11),Phe(13),Nle(14)]Bn-(6-14)开发而来,但它们的选择性/高亲和力的分子决定因素差异很大。

相似文献

1
Molecular basis for agonist selectivity and activation of the orphan bombesin receptor subtype 3 receptor.
J Pharmacol Exp Ther. 2008 Feb;324(2):463-74. doi: 10.1124/jpet.107.132332. Epub 2007 Nov 15.
2
Rational design of a peptide agonist that interacts selectively with the orphan receptor, bombesin receptor subtype 3.
J Biol Chem. 2001 Mar 23;276(12):9219-29. doi: 10.1074/jbc.M008737200. Epub 2000 Dec 8.
5
Molecular basis for selectivity of high affinity peptide antagonists for the gastrin-releasing peptide receptor.
J Biol Chem. 2001 Sep 28;276(39):36652-63. doi: 10.1074/jbc.M104566200. Epub 2001 Aug 2.
6
Molecular basis for high affinity and selectivity of peptide antagonist, Bantag-1, for the orphan BB3 receptor.
Biochem Pharmacol. 2016 Sep 1;115:64-76. doi: 10.1016/j.bcp.2016.06.013. Epub 2016 Jun 23.

引用本文的文献

1
The Nonpeptide Agonist MK-5046 Functions As an Allosteric Agonist for the Bombesin Receptor Subtype-3.
J Pharmacol Exp Ther. 2022 Aug;382(2):66-78. doi: 10.1124/jpet.121.001033. Epub 2022 May 29.
2
Molecular basis for high affinity and selectivity of peptide antagonist, Bantag-1, for the orphan BB3 receptor.
Biochem Pharmacol. 2016 Sep 1;115:64-76. doi: 10.1016/j.bcp.2016.06.013. Epub 2016 Jun 23.
3
Identifying ligands at orphan GPCRs: current status using structure-based approaches.
Br J Pharmacol. 2016 Oct;173(20):2934-51. doi: 10.1111/bph.13452. Epub 2016 Mar 5.
4
Bombesin receptor subtype 3 as a potential target for obesity and diabetes.
Expert Opin Ther Targets. 2015;19(9):1153-70. doi: 10.1517/14728222.2015.1056154. Epub 2015 Jun 12.
6
The molecular basis for high affinity of a universal ligand for human bombesin receptor (BnR) family members.
Biochem Pharmacol. 2012 Oct 1;84(7):936-48. doi: 10.1016/j.bcp.2012.07.010. Epub 2012 Jul 22.
8
Bombesin receptor subtype-3 agonists stimulate the growth of lung cancer cells and increase EGF receptor tyrosine phosphorylation.
Peptides. 2011 Aug;32(8):1677-84. doi: 10.1016/j.peptides.2011.06.011. Epub 2011 Jun 25.
9
Activation of bombesin receptor subtype-3 influences activity of orexin neurons by both direct and indirect pathways.
J Mol Neurosci. 2010 Sep;42(1):106-11. doi: 10.1007/s12031-010-9382-5. Epub 2010 May 14.

本文引用的文献

3
G protein coupled receptor structure and activation.
Biochim Biophys Acta. 2007 Apr;1768(4):794-807. doi: 10.1016/j.bbamem.2006.10.021. Epub 2006 Nov 15.
4
Insights into the cholecystokinin 2 receptor binding site and processes of activation.
Mol Pharmacol. 2006 Dec;70(6):1935-45. doi: 10.1124/mol.106.029967. Epub 2006 Sep 22.
5
Immunohistochemical detection of bombesin receptor subtypes GRP-R and BRS-3 in human tumors using novel antipeptide antibodies.
Virchows Arch. 2006 Oct;449(4):421-7. doi: 10.1007/s00428-006-0265-7. Epub 2006 Sep 12.
7
The Amber biomolecular simulation programs.
J Comput Chem. 2005 Dec;26(16):1668-88. doi: 10.1002/jcc.20290.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验