Suppr超能文献

利用转录谱预测蚊子的年龄

Predicting the age of mosquitoes using transcriptional profiles.

作者信息

Cook Peter E, Hugo Leon E, Iturbe-Ormaetxe Iñaki, Williams Craig R, Chenoweth Stephen F, Ritchie Scott A, Ryan Peter A, Kay Brian H, Blows Mark W, O'Neill Scott L

机构信息

School of Integrative Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.

出版信息

Nat Protoc. 2007;2(11):2796-806. doi: 10.1038/nprot.2007.396.

Abstract

The use of transcriptional profiles for predicting mosquito age is a novel solution for the longstanding problem of determining the age of field-caught mosquitoes. Female mosquito age is of central importance to the transmission of a range of human pathogens. The transcriptional age-grading protocol we present here was developed in Aedes aegypti, principally as a research tool. Age predictions are made on the basis of transcriptional data collected from mosquitoes of known age. The abundance of eight candidate gene transcripts is quantified relative to a reference gene using quantitative reverse transcriptase-PCR (RT-PCR). Normalized gene expression (GE) measures are analyzed using canonical redundancy analysis to obtain a multivariate predictor of mosquito age. The relationship between the first redundancy variate and known age is used as the calibration model. Normalized GE measures are quantified for wild-caught mosquitoes, and ages are then predicted using this calibration model. Rearing of mosquitoes to specific ages for calibration data can take up to 40 d. Molecular analysis of transcript abundance, and subsequent age predictions, should take approximately 3-5 d for 100 individuals.

摘要

利用转录谱预测蚊子年龄是解决长期以来确定野外捕获蚊子年龄这一问题的新方法。雌蚊年龄对于一系列人类病原体的传播至关重要。我们在此介绍的转录年龄分级方案是在埃及伊蚊中开发的,主要作为一种研究工具。年龄预测是基于从已知年龄的蚊子收集的转录数据进行的。使用定量逆转录聚合酶链反应(RT-PCR)相对于一个参考基因对八个候选基因转录本的丰度进行定量。使用典型冗余分析对标准化基因表达(GE)测量值进行分析,以获得蚊子年龄的多变量预测指标。第一个冗余变量与已知年龄之间的关系用作校准模型。对野外捕获的蚊子进行标准化GE测量值的定量,然后使用该校准模型预测年龄。将蚊子饲养到特定年龄以获取校准数据可能需要长达40天。对于100只个体,转录本丰度的分子分析以及随后的年龄预测大约需要3至5天。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验