Valero-Cuevas Francisco J, Anand Vikrant V, Saxena Anupam, Lipson Hod
Neuromuscular Biomechanics Laboratory, Department of Biomedical Engineering, University of Southern California, 3710 McClintock Avenue, Room RTH 402, Los Angeles, CA 90089, USA.
IEEE Trans Biomed Eng. 2007 Nov;54(11):1951-64. doi: 10.1109/TBME.2007.906494.
Selecting a model topology that realistically predicts biomechanical function remains an unsolved problem. Today's dominant modeling approach is to replicate experimental input/output data by performing parameter estimation on an assumed topology. In contrast, we propose that modeling some complex biomechanical systems requires the explicit and simultaneous exploration of model topology (i.e., the type, number, and organization of physics-based functional building blocks) and parameter values. In this paper, we use the example of modeling the notoriously complex tendon networks of the fingers to present three critical advances towards the goal of implementing this extended modeling paradigm. First, we describe a novel computational environment to perform quasi-static simulations of arbitrary topologies of elastic structures undergoing large deformations. Second, we use this form of simulation to show that the assumed topology for the tendon network of a finger plays an important role in the propagation of tension to the finger joints. Third, we demonstrate the use of a novel inference algorithm that simultaneously explores the topology and parameter values for hidden synthetic tendon networks. We conclude by discussing critical issues of observability, separability, and uniqueness of topological features inferred from input/output data, and outline the challenges that need to be overcome to apply this novel modeling paradigm to extract causal models in real anatomical systems.
选择一个能切实预测生物力学功能的模型拓扑结构仍是一个未解决的问题。当今占主导地位的建模方法是通过对假定的拓扑结构进行参数估计来复制实验输入/输出数据。相比之下,我们提出,对一些复杂的生物力学系统进行建模需要同时明确地探索模型拓扑结构(即基于物理的功能构建块的类型、数量和组织方式)和参数值。在本文中,我们以对手指极其复杂的肌腱网络进行建模为例,展示在实现这种扩展建模范式的目标方面取得的三项关键进展。第一,我们描述了一种新颖的计算环境,用于对经历大变形的弹性结构的任意拓扑进行准静态模拟。第二,我们利用这种模拟形式表明,手指肌腱网络的假定拓扑结构在张力向手指关节的传播中起着重要作用。第三,我们展示了一种新颖的推理算法的应用,该算法能同时探索隐藏的合成肌腱网络的拓扑结构和参数值。我们通过讨论从输入/输出数据推断出的拓扑特征的可观测性、可分离性和唯一性等关键问题来得出结论,并概述将这种新颖的建模范式应用于在真实解剖系统中提取因果模型时需要克服的挑战。