Suppr超能文献

估计隐藏的学习表征。

Estimating the hidden learning representations.

作者信息

Brovelli Andrea, Coquelin Pierre-Arnaud, Boussaoud Driss

机构信息

Institut de Neurosciences Cognitives de la Méditerrannée, UMR 6193 CNRS-Université de la Méditerranée, 31 Chemin Joseph Aiguier, 13402, Marseille, France.

出版信息

J Physiol Paris. 2007 Jan-May;101(1-3):110-7. doi: 10.1016/j.jphysparis.2007.10.002. Epub 2007 Oct 16.

Abstract

Successful adaptation relies on the ability to learn the consequence of our actions in different environments. However, understanding the neural bases of this ability still represents one of the great challenges of system neuroscience. In fact, the neuronal plasticity changes occurring during learning cannot be fully controlled experimentally and their evolution is hidden. Our approach is to provide hypotheses about the structure and dynamics of the hidden plasticity changes using behavioral learning theory. In fact, behavioral models of animal learning provide testable predictions about the hidden learning representations by formalizing their relation with the observables of the experiment (stimuli, actions and outcomes). Thus, we can understand whether and how the predicted learning processes are represented at the neural level by estimating their evolution and correlating them with neural data. Here, we present a bayesian model approach to estimate the evolution of the internal learning representations from the observations of the experiment (state estimation), and to identify the set of models' parameters (parameter estimation) and the class of behavioral model (model selection) that are most likely to have generated a given sequence of actions and outcomes. More precisely, we use Sequential Monte Carlo methods for state estimation and the maximum likelihood principle (MLP) for model selection and parameter estimation. We show that the method recovers simulated trajectories of learning sessions on a single-trial basis and provides predictions about the activity of different categories of neurons that should participate in the learning process. By correlating the estimated evolutions of the learning variables, we will be able to test the validity of different models of instrumental learning and possibly identify the neural bases of learning.

摘要

成功的适应依赖于在不同环境中学习我们行为后果的能力。然而,理解这种能力的神经基础仍然是系统神经科学的重大挑战之一。事实上,学习过程中发生的神经元可塑性变化无法在实验中得到完全控制,其演变过程是隐藏的。我们的方法是利用行为学习理论对隐藏的可塑性变化的结构和动态提供假设。实际上,动物学习的行为模型通过将其与实验的可观察量(刺激、动作和结果)的关系形式化,提供了关于隐藏学习表征的可测试预测。因此,通过估计预测学习过程的演变并将其与神经数据相关联,我们可以了解这些过程在神经层面是否以及如何得到体现。在这里,我们提出一种贝叶斯模型方法,用于从实验观察中估计内部学习表征的演变(状态估计),并识别最有可能产生给定动作和结果序列的模型参数集(参数估计)和行为模型类别(模型选择)。更确切地说,我们使用顺序蒙特卡罗方法进行状态估计,使用最大似然原理(MLP)进行模型选择和参数估计。我们表明,该方法能够在单次试验的基础上恢复学习过程的模拟轨迹,并提供关于应参与学习过程的不同类别神经元活动的预测。通过将学习变量的估计演变相关联,我们将能够测试不同工具性学习模型的有效性,并有可能识别学习的神经基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验