Suppr超能文献

使用序贯蒙特卡罗方法构建用于神经系统的点过程自适应滤波算法。

Construction of point process adaptive filter algorithms for neural systems using sequential Monte Carlo methods.

作者信息

Ergün Ayla, Barbieri Riccardo, Eden Uri T, Wilson Matthew A, Brown Emery N

机构信息

Neuroscience Statistics Research Laboratory, Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA 02114-2698, USA.

出版信息

IEEE Trans Biomed Eng. 2007 Mar;54(3):419-28. doi: 10.1109/TBME.2006.888821.

Abstract

The stochastic state point process filter (SSPPF) and steepest descent point process filter (SDPPF) are adaptive filter algorithms for state estimation from point process observations that have been used to track neural receptive field plasticity and to decode the representations of biological signals in ensemble neural spiking activity. The SSPPF and SDPPF are constructed using, respectively, Gaussian and steepest descent approximations to the standard Bayes and Chapman-Kolmogorov (BCK) system of filter equations. To extend these approaches for constructing point process adaptive filters, we develop sequential Monte Carlo (SMC) approximations to the BCK equations in which the SSPPF and SDPPF serve as the proposal densities. We term the two new SMC point process filters SMC-PPFs and SMC-PPFD, respectively. We illustrate the new filter algorithms by decoding the wind stimulus magnitude from simulated neural spiking activity in the cricket cercal system. The SMC-PPFs and SMC-PPFD provide more accurate state estimates at low number of particles than a conventional bootstrap SMC filter algorithm in which the state transition probability density is the proposal density. We also use the SMC-PPFs algorithm to track the temporal evolution of a spatial receptive field of a rat hippocampal neuron recorded while the animal foraged in an open environment. Our results suggest an approach for constructing point process adaptive filters using SMC methods.

摘要

随机状态点过程滤波器(SSPPF)和最速下降点过程滤波器(SDPPF)是用于从点过程观测进行状态估计的自适应滤波算法,已被用于追踪神经感受野可塑性以及解码群体神经放电活动中生物信号的表征。SSPPF和SDPPF分别使用对标准贝叶斯和查普曼 - 柯尔莫哥洛夫(BCK)滤波方程组的高斯近似和最速下降近似来构建。为了扩展这些构建点过程自适应滤波器的方法,我们开发了对BCK方程的序贯蒙特卡罗(SMC)近似,其中SSPPF和SDPPF用作提议密度。我们将这两种新的SMC点过程滤波器分别称为SMC - PPFs和SMC - PPFD。我们通过从蟋蟀尾须系统中的模拟神经放电活动解码风刺激强度来说明新的滤波算法。与状态转移概率密度为提议密度的传统自助SMC滤波算法相比,SMC - PPFs和SMC - PPFD在粒子数量较少时能提供更准确的状态估计。我们还使用SMC - PPFs算法来追踪在开放环境中觅食的大鼠海马神经元空间感受野的时间演变。我们的结果提出了一种使用SMC方法构建点过程自适应滤波器的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验