Greenwood Sam M, Connolly Christopher N
Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, UK.
Neuropharmacology. 2007 Dec;53(8):891-8. doi: 10.1016/j.neuropharm.2007.10.003. Epub 2007 Oct 14.
Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system (CNS) and is normally stored intracellularly. However, in instances of CNS injury or disease, increased concentrations of extracellular glutamate can result in the over-activation of ionotropic glutamate receptors and trigger neuronal cell death (termed excitotoxicity). Two early hallmarks of such neuronal toxicity are mitochondrial dysfunction (depolarisation, decreased ATP synthesis, structural collapse and potential opening of the permeability transition pore) and the formation of focal swellings (also termed varicosities/beads) along the length of the dendrites. In this review, we summarise current knowledge of the mechanisms that underlie these early excitotoxic events as well as the mechanisms that facilitate dendritic recovery following termination of the excitotoxic insult.
谷氨酸是哺乳动物中枢神经系统(CNS)中主要的兴奋性神经递质,通常储存于细胞内。然而,在中枢神经系统损伤或疾病的情况下,细胞外谷氨酸浓度升高会导致离子型谷氨酸受体过度激活,并引发神经元细胞死亡(称为兴奋性毒性)。这种神经元毒性的两个早期特征是线粒体功能障碍(去极化、ATP合成减少、结构崩溃和通透性转换孔的潜在开放)以及沿树突长度形成局灶性肿胀(也称为静脉曲张/珠状结构)。在本综述中,我们总结了这些早期兴奋性毒性事件背后的机制以及兴奋性毒性损伤终止后促进树突恢复的机制的现有知识。