Warnecke Falk, Luginbühl Peter, Ivanova Natalia, Ghassemian Majid, Richardson Toby H, Stege Justin T, Cayouette Michelle, McHardy Alice C, Djordjevic Gordana, Aboushadi Nahla, Sorek Rotem, Tringe Susannah G, Podar Mircea, Martin Hector Garcia, Kunin Victor, Dalevi Daniel, Madejska Julita, Kirton Edward, Platt Darren, Szeto Ernest, Salamov Asaf, Barry Kerrie, Mikhailova Natalia, Kyrpides Nikos C, Matson Eric G, Ottesen Elizabeth A, Zhang Xinning, Hernández Myriam, Murillo Catalina, Acosta Luis G, Rigoutsos Isidore, Tamayo Giselle, Green Brian D, Chang Cathy, Rubin Edward M, Mathur Eric J, Robertson Dan E, Hugenholtz Philip, Leadbetter Jared R
DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA.
Nature. 2007 Nov 22;450(7169):560-5. doi: 10.1038/nature06269.
From the standpoints of both basic research and biotechnology, there is considerable interest in reaching a clearer understanding of the diversity of biological mechanisms employed during lignocellulose degradation. Globally, termites are an extremely successful group of wood-degrading organisms and are therefore important both for their roles in carbon turnover in the environment and as potential sources of biochemical catalysts for efforts aimed at converting wood into biofuels. Only recently have data supported any direct role for the symbiotic bacteria in the gut of the termite in cellulose and xylan hydrolysis. Here we use a metagenomic analysis of the bacterial community resident in the hindgut paunch of a wood-feeding 'higher' Nasutitermes species (which do not contain cellulose-fermenting protozoa) to show the presence of a large, diverse set of bacterial genes for cellulose and xylan hydrolysis. Many of these genes were expressed in vivo or had cellulase activity in vitro, and further analyses implicate spirochete and fibrobacter species in gut lignocellulose degradation. New insights into other important symbiotic functions including H2 metabolism, CO2-reductive acetogenesis and N2 fixation are also provided by this first system-wide gene analysis of a microbial community specialized towards plant lignocellulose degradation. Our results underscore how complex even a 1-microl environment can be.
从基础研究和生物技术的角度来看,更清楚地了解木质纤维素降解过程中所采用的生物机制的多样性具有相当大的意义。在全球范围内,白蚁是极其成功的一组木材降解生物,因此,它们对于环境中碳周转的作用以及作为将木材转化为生物燃料的生化催化剂的潜在来源都很重要。直到最近,才有数据支持白蚁肠道中的共生细菌在纤维素和木聚糖水解中发挥任何直接作用。在这里,我们对一种以木材为食的“高等”鼻白蚁(不含有纤维素发酵原生动物)后肠嗉囊中存在的细菌群落进行宏基因组分析,以显示存在大量多样的用于纤维素和木聚糖水解的细菌基因。其中许多基因在体内表达或在体外具有纤维素酶活性,进一步的分析表明螺旋体和纤维杆菌物种参与肠道木质纤维素降解。对其他重要共生功能(包括H2代谢、CO2还原产乙酸和N2固定)的新见解也来自对专门用于植物木质纤维素降解的微生物群落的首次全系统基因分析。我们的结果强调了即使是1微升的环境也可能是多么复杂。