Suppr超能文献

细胞外跨膜结构域界面处的乙酰胆碱受体门控:半胱氨酸环和M2-M3连接区

Acetylcholine receptor gating at extracellular transmembrane domain interface: the cys-loop and M2-M3 linker.

作者信息

Jha Archana, Cadugan David J, Purohit Prasad, Auerbach Anthony

机构信息

Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA.

出版信息

J Gen Physiol. 2007 Dec;130(6):547-58. doi: 10.1085/jgp.200709856.

Abstract

Acetylcholine receptor channel gating is a propagated conformational cascade that links changes in structure and function at the transmitter binding sites in the extracellular domain (ECD) with those at a "gate" in the transmembrane domain (TMD). We used Phi-value analysis to probe the relative timing of the gating motions of alpha-subunit residues located near the ECD-TMD interface. Mutation of four of the seven amino acids in the M2-M3 linker (which connects the pore-lining M2 helix with the M3 helix), including three of the four residues in the core of the linker, changed the diliganded gating equilibrium constant (K(eq)) by up to 10,000-fold (P272 > I274 > A270 > G275). The average Phi-value for the whole linker was approximately 0.64. One interpretation of this result is that the gating motions of the M2-M3 linker are approximately synchronous with those of much of M2 (approximately 0.64), but occur after those of the transmitter binding site region (approximately 0.93) and loops 2 and 7 (approximately 0.77). We also examined mutants of six cys-loop residues (V132, T133, H134, F135, P136, and F137). Mutation of V132, H134, and F135 changed K(eq) by 2800-, 10-, and 18-fold, respectively, and with an average Phi-value of 0.74, similar to those of other cys-loop residues. Even though V132 and I274 are close, the energetic coupling between I and V mutants of these positions was small (< or =0.51 kcal mol(-1)). The M2-M3 linker appears to be the key moving part that couples gating motions at the base of the ECD with those in TMD. These interactions are distributed along an approximately 16-A border and involve about a dozen residues.

摘要

乙酰胆碱受体通道门控是一种传播性的构象级联反应,它将细胞外结构域(ECD)中递质结合位点处的结构和功能变化与跨膜结构域(TMD)中“门”处的变化联系起来。我们使用Phi值分析来探究位于ECD - TMD界面附近的α亚基残基门控运动的相对时间。M2 - M3连接区(连接构成孔道内衬的M2螺旋与M3螺旋)中七个氨基酸中的四个发生突变,包括连接区核心四个残基中的三个,使双配体门控平衡常数(K(eq))变化高达10000倍(P272 > I274 > A270 > G275)。整个连接区的平均Phi值约为0.64。对该结果的一种解释是,M2 - M3连接区的门控运动与M2的大部分运动大致同步(约0.64),但发生在递质结合位点区域(约0.93)以及环2和环7(约0.77)的运动之后。我们还研究了六个半胱氨酸环残基(V132、T133、H134、F135、P136和F137)的突变体。V132、H134和F135的突变分别使K(eq)变化2800倍、10倍和18倍,平均Phi值为0.74,与其他半胱氨酸环残基相似。尽管V132和I274位置相近,但这些位置的I和V突变体之间的能量耦合很小(≤0.51 kcal mol(-1))。M2 - M3连接区似乎是将ECD底部的门控运动与TMD中的门控运动耦合起来的关键运动部分。这些相互作用沿着大约16埃的边界分布,涉及大约十二个残基。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df9e/2151658/63a9e1135d05/jgp1300547f01.jpg

相似文献

2
Acetylcholine receptor gating at extracellular transmembrane domain interface: the "pre-M1" linker.
J Gen Physiol. 2007 Dec;130(6):559-68. doi: 10.1085/jgp.200709857.
3
Acetylcholine receptor gating: movement in the alpha-subunit extracellular domain.
J Gen Physiol. 2007 Dec;130(6):569-79. doi: 10.1085/jgp.200709858.
4
Conformational dynamics of the alphaM3 transmembrane helix during acetylcholine receptor channel gating.
Biophys J. 2007 Aug 1;93(3):859-65. doi: 10.1529/biophysj.107.105171. Epub 2007 May 18.
5
Subunit symmetry at the extracellular domain-transmembrane domain interface in acetylcholine receptor channel gating.
J Biol Chem. 2010 Dec 10;285(50):38898-904. doi: 10.1074/jbc.M110.169110. Epub 2010 Sep 23.
6
The energetic consequences of loop 9 gating motions in acetylcholine receptor-channels.
J Physiol. 2012 Jan 1;590(1):119-29. doi: 10.1113/jphysiol.2011.213892. Epub 2011 Oct 24.
7
The extracellular linker of muscle acetylcholine receptor channels is a gating control element.
J Gen Physiol. 2000 Sep;116(3):327-40. doi: 10.1085/jgp.116.3.327.
9
Binding to gating transduction in nicotinic receptors: Cys-loop energetically couples to pre-M1 and M2-M3 regions.
J Neurosci. 2009 Mar 11;29(10):3189-99. doi: 10.1523/JNEUROSCI.6185-08.2009.
10
The role of loop 5 in acetylcholine receptor channel gating.
J Gen Physiol. 2003 Nov;122(5):521-39. doi: 10.1085/jgp.200308885. Epub 2003 Oct 13.

引用本文的文献

1
Key role of the TM2-TM3 loop in calcium potentiation of the α9α10 nicotinic acetylcholine receptor.
Cell Mol Life Sci. 2024 Aug 9;81(1):337. doi: 10.1007/s00018-024-05381-2.
3
GABA receptor subunit M2-M3 linkers have asymmetric roles in pore gating and diazepam modulation.
Biophys J. 2024 Jul 16;123(14):2085-2096. doi: 10.1016/j.bpj.2024.02.016. Epub 2024 Feb 22.
4
Two residues determine nicotinic acetylcholine receptor requirement for RIC-3.
Protein Sci. 2023 Sep;32(9):e4718. doi: 10.1002/pro.4718.
5
Modelling organophosphate intoxication in C. elegans highlights nicotinic acetylcholine receptor determinants that mitigate poisoning.
PLoS One. 2023 Apr 21;18(4):e0284786. doi: 10.1371/journal.pone.0284786. eCollection 2023.
6
α Proline 277 Residues Regulate GABAR Gating through M2-M3 Loop Interaction in the Interface Region.
ACS Chem Neurosci. 2022 Nov 2;13(21):3044-3056. doi: 10.1021/acschemneuro.2c00401. Epub 2022 Oct 11.
8
Structure and gating mechanism of the α7 nicotinic acetylcholine receptor.
Cell. 2021 Apr 15;184(8):2121-2134.e13. doi: 10.1016/j.cell.2021.02.049. Epub 2021 Mar 17.

本文引用的文献

1
Acetylcholine receptor gating: movement in the alpha-subunit extracellular domain.
J Gen Physiol. 2007 Dec;130(6):569-79. doi: 10.1085/jgp.200709858.
2
Acetylcholine receptor gating at extracellular transmembrane domain interface: the "pre-M1" linker.
J Gen Physiol. 2007 Dec;130(6):559-68. doi: 10.1085/jgp.200709857.
3
How to turn the reaction coordinate into time.
J Gen Physiol. 2007 Dec;130(6):543-6. doi: 10.1085/jgp.200709898.
4
Nanosecond-timescale conformational dynamics of the human alpha7 nicotinic acetylcholine receptor.
Biophys J. 2007 Oct 15;93(8):2622-34. doi: 10.1529/biophysj.107.109843. Epub 2007 Jun 15.
5
Conformational dynamics of the alphaM3 transmembrane helix during acetylcholine receptor channel gating.
Biophys J. 2007 Aug 1;93(3):859-65. doi: 10.1529/biophysj.107.105171. Epub 2007 May 18.
6
A stepwise mechanism for acetylcholine receptor channel gating.
Nature. 2007 Apr 19;446(7138):930-3. doi: 10.1038/nature05721.
7
Role of pairwise interactions between M1 and M2 domains of the nicotinic receptor in channel gating.
Biophys J. 2007 Jan 1;92(1):76-86. doi: 10.1529/biophysj.106.088757. Epub 2006 Oct 6.
8
An NMR perspective on enzyme dynamics.
Chem Rev. 2006 Aug;106(8):3055-79. doi: 10.1021/cr050312q.
10
Recent advances in Cys-loop receptor structure and function.
Nature. 2006 Mar 23;440(7083):448-55. doi: 10.1038/nature04708.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验