Suppr超能文献

微型根际图像中细根的自动识别

Automatic discrimination of fine roots in minirhizotron images.

作者信息

Zeng Guang, Birchfield Stanley T, Wells Christina E

机构信息

Department of Electrical and Computer Engineering, Clemson University, Clemson SC 29634, USA.

Department of Horticulture, Clemson University, Clemson SC 29634, USA.

出版信息

New Phytol. 2008;177(2):549-557. doi: 10.1111/j.1469-8137.2007.02271.x. Epub 2007 Nov 27.

Abstract

Minirhizotrons provide detailed information on the production, life history and mortality of fine roots. However, manual processing of minirhizotron images is time-consuming, limiting the number and size of experiments that can reasonably be analysed. Previously, an algorithm was developed to automatically detect and measure individual roots in minirhizotron images. Here, species-specific root classifiers were developed to discriminate detected roots from bright background artifacts. Classifiers were developed from training images of peach (Prunus persica), freeman maple (Acer x freemanii) and sweetbay magnolia (Magnolia virginiana) using the Adaboost algorithm. True- and false-positive rates for classifiers were estimated using receiver operating characteristic curves. Classifiers gave true positive rates of 89-94% and false positive rates of 3-7% when applied to nontraining images of the species for which they were developed. The application of a classifier trained on one species to images from another species resulted in little or no reduction in accuracy. These results suggest that a single root classifier can be used to distinguish roots from background objects across multiple minirhizotron experiments. By incorporating root detection and discrimination algorithms into an open-source minirhizotron image analysis application, many analysis tasks that are currently performed by hand can be automated.

摘要

微根管能提供有关细根的生长、生活史和死亡率的详细信息。然而,微根管图像的人工处理非常耗时,限制了能够合理分析的实验数量和规模。此前,已开发出一种算法来自动检测和测量微根管图像中的单根。在此,开发了特定物种的根系分类器,以将检测到的根与明亮的背景伪影区分开来。使用Adaboost算法,根据桃树(Prunus persica)、弗里曼枫(Acer x freemanii)和北美香木兰(Magnolia virginiana)的训练图像开发了分类器。使用接收者操作特征曲线估计分类器的真阳性率和假阳性率。当将分类器应用于其开发所针对物种的非训练图像时,真阳性率为89%-94%,假阳性率为3%-7%。将在一个物种上训练的分类器应用于另一个物种的图像时,准确率几乎没有降低或没有降低。这些结果表明,单个根系分类器可用于在多个微根管实验中区分根与背景物体。通过将根系检测和辨别算法纳入一个开源的微根管图像分析应用程序,目前许多手工执行的分析任务都可以实现自动化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验