Suppr超能文献

在探测 minirhizotron 图像中的植物根系方面,卷积神经网络“RootDetector”表现优异,与人类专家不相上下,而且高效且可重现。

As good as human experts in detecting plant roots in minirhizotron images but efficient and reproducible: the convolutional neural network "RootDetector".

机构信息

Experimental Plant Ecology, Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, 19489, Greifswald, Germany.

Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.

出版信息

Sci Rep. 2023 Jan 25;13(1):1399. doi: 10.1038/s41598-023-28400-x.

Abstract

Plant roots influence many ecological and biogeochemical processes, such as carbon, water and nutrient cycling. Because of difficult accessibility, knowledge on plant root growth dynamics in field conditions, however, is fragmentary at best. Minirhizotrons, i.e. transparent tubes placed in the substrate into which specialized cameras or circular scanners are inserted, facilitate the capture of high-resolution images of root dynamics at the soil-tube interface with little to no disturbance after the initial installation. Their use, especially in field studies with multiple species and heterogeneous substrates, though, is limited by the amount of work that subsequent manual tracing of roots in the images requires. Furthermore, the reproducibility and objectivity of manual root detection is questionable. Here, we use a Convolutional Neural Network (CNN) for the automatic detection of roots in minirhizotron images and compare the performance of our RootDetector with human analysts with different levels of expertise. Our minirhizotron data come from various wetlands on organic soils, i.e. highly heterogeneous substrates consisting of dead plant material, often times mainly roots, in various degrees of decomposition. This may be seen as one of the most challenging soil types for root segmentation in minirhizotron images. RootDetector showed a high capability to correctly segment root pixels in minirhizotron images from field observations (F1 = 0.6044; r compared to a human expert = 0.99). Reproducibility among humans, however, depended strongly on expertise level, with novices showing drastic variation among individual analysts and annotating on average more than 13-times higher root length/cm per image compared to expert analysts. CNNs such as RootDetector provide a reliable and efficient method for the detection of roots and root length in minirhizotron images even from challenging field conditions. Analyses with RootDetector thus save resources, are reproducible and objective, and are as accurate as manual analyses performed by human experts.

摘要

植物根系影响许多生态和生物地球化学过程,如碳、水和养分循环。由于难以接近,因此在野外条件下对植物根系生长动态的了解充其量只是零碎的。根箱,即放置在基质中的透明管,其中插入专门的相机或圆形扫描仪,便于在初始安装后几乎没有干扰的情况下捕获土壤-管界面处根系动态的高分辨率图像。然而,它们的使用,特别是在具有多种物种和异质基质的野外研究中,受到后续在图像中手动追踪根系所需工作量的限制。此外,手动检测根系的可重复性和客观性值得怀疑。在这里,我们使用卷积神经网络 (CNN) 自动检测根箱图像中的根系,并将我们的 RootDetector 的性能与具有不同专业水平的人类分析员进行比较。我们的根箱数据来自各种有机土壤湿地,即高度异质的基质,由各种分解程度的死植物材料,通常主要是根系组成。这可能被视为根箱图像中最具挑战性的土壤类型之一。RootDetector 显示出在从野外观察到的根箱图像中正确分割根像素的高能力(F1=0.6044;与人类专家相比 r=0.99)。然而,人类之间的可重复性强烈依赖于专业水平,新手分析员之间存在明显的差异,平均每个图像的标注根长/cm 比专家分析员高出 13 倍以上。像 RootDetector 这样的 CNN 为检测根箱图像中的根系和根长提供了一种可靠且高效的方法,即使在具有挑战性的野外条件下也是如此。因此,使用 RootDetector 进行分析可以节省资源,具有可重复性和客观性,并且与人类专家进行的手动分析一样准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验