Neufeld Josh D, Schäfer Hendrik, Cox Michael J, Boden Rich, McDonald Ian R, Murrell J Colin
Department of Biological Sciences, University of Warwick, Coventry, UK.
ISME J. 2007 Oct;1(6):480-91. doi: 10.1038/ismej.2007.65. Epub 2007 Aug 9.
The metabolism of one-carbon (C(1)) compounds in the marine environment affects global warming, seawater ecology and atmospheric chemistry. Despite their global significance, marine microorganisms that consume C(1) compounds in situ remain poorly characterized. Stable-isotope probing (SIP) is an ideal tool for linking the function and phylogeny of methylotrophic organisms by the metabolism and incorporation of stable-isotope-labelled substrates into nucleic acids. By combining DNA-SIP and time-series sampling, we characterized the organisms involved in the assimilation of methanol and methylamine in coastal sea water (Plymouth, UK). Labelled nucleic acids were analysed by denaturing gradient gel electrophoresis (DGGE) and clone libraries of 16S rRNA genes. In addition, we characterized the functional gene complement of labelled nucleic acids with an improved primer set targeting methanol dehydrogenase (mxaF) and newly designed primers for methylamine dehydrogenase (mauA). Predominant DGGE phylotypes, 16S rRNA, methanol and methylamine dehydrogenase gene sequences, and cultured isolates all implicated Methylophaga spp, moderately halophilic marine methylotrophs, in the consumption of both methanol and methylamine. Additionally, an mxaF sequence obtained from DNA extracted from sea water clustered with those detected in (13)C-DNA, suggesting a predominance of Methylophaga spp among marine methylotrophs. Unexpectedly, most predominant 16S rRNA and functional gene sequences from (13)C-DNA were clustered in distinct substrate-specific clades, with 16S rRNA genes clustering with sequences from the Gammaproteobacteria. These clades have no cultured representatives and reveal an ecological adaptation of particular uncultured methylotrophs to specific C(1) compounds in the coastal marine environment.
海洋环境中一碳(C(1))化合物的代谢影响全球变暖、海水生态和大气化学。尽管它们具有全球意义,但在原位消耗C(1)化合物的海洋微生物仍未得到充分表征。稳定同位素探测(SIP)是一种理想的工具,可通过将稳定同位素标记的底物代谢并掺入核酸来关联甲基营养生物的功能和系统发育。通过结合DNA-SIP和时间序列采样,我们对英国普利茅斯沿海水域中参与甲醇和甲胺同化的生物进行了表征。通过变性梯度凝胶电泳(DGGE)和16S rRNA基因的克隆文库分析标记的核酸。此外,我们用针对甲醇脱氢酶(mxaF)的改进引物组和新设计的甲胺脱氢酶引物(mauA)对标记核酸的功能基因互补进行了表征。主要的DGGE系统型、16S rRNA、甲醇和甲胺脱氢酶基因序列以及培养的分离株均表明嗜盐中等的海洋甲基营养菌嗜甲基菌属参与了甲醇和甲胺的消耗。此外,从海水中提取的DNA获得的mxaF序列与在(13)C-DNA中检测到的序列聚类,表明嗜甲基菌属在海洋甲基营养菌中占优势。出乎意料的是,来自(13)C-DNA的大多数主要16S rRNA和功能基因序列聚集在不同的底物特异性进化枝中,16S rRNA基因与γ-变形菌门的序列聚类。这些进化枝没有培养的代表,揭示了特定未培养甲基营养菌对沿海海洋环境中特定C(1)化合物的生态适应性。