Suppr超能文献

一种流感传播的生物学模型:无症状感染和免疫对大流行规划的影响

A biological model for influenza transmission: pandemic planning implications of asymptomatic infection and immunity.

作者信息

Mathews John D, McCaw Christopher T, McVernon Jodie, McBryde Emma S, McCaw James M

机构信息

Vaccine & Immunisation Research Group, Murdoch Childrens Research Institute and School of Population Health, The University of Melbourne, Parkville, Victoria, Australia.

出版信息

PLoS One. 2007 Nov 28;2(11):e1220. doi: 10.1371/journal.pone.0001220.

Abstract

BACKGROUND

The clinical attack rate of influenza is influenced by prior immunity and mixing patterns in the host population, and also by the proportion of infections that are asymptomatic. This complexity makes it difficult to directly estimate R(0) from the attack rate, contributing to uncertainty in epidemiological models to guide pandemic planning. We have modelled multiple wave outbreaks of influenza from different populations to allow for changing immunity and asymptomatic infection and to make inferences about R(0).

DATA AND METHODS

On the island of Tristan da Cunha (TdC), 96% of residents reported illness during an H3N2 outbreak in 1971, compared with only 25% of RAF personnel in military camps during the 1918 H1N1 pandemic. Monte Carlo Markov Chain (MCMC) methods were used to estimate model parameter distributions.

FINDINGS

We estimated that most islanders on TdC were non-immune (susceptible) before the first wave, and that almost all exposures of susceptible persons caused symptoms. The median R(0) of 6.4 (95% credibility interval 3.7-10.7) implied that most islanders were exposed twice, although only a minority became ill in the second wave because of temporary protection following the first wave. In contrast, only 51% of RAF personnel were susceptible before the first wave, and only 38% of exposed susceptibles reported symptoms. R(0) in this population was also lower [2.9 (2.3-4.3)], suggesting reduced viral transmission in a partially immune population.

INTERPRETATION

Our model implies that the RAF population was partially protected before the summer pandemic wave of 1918, arguably because of prior exposure to interpandemic influenza. Without such protection, each symptomatic case of influenza would transmit to between 2 and 10 new cases, with incidence initially doubling every 1-2 days. Containment of a novel virus could be more difficult than hitherto supposed.

摘要

背景

流感的临床发病率受宿主群体先前免疫力和混合模式影响,也受无症状感染比例的影响。这种复杂性使得难以直接根据发病率估算基本传染数(R₀),导致在指导大流行规划的流行病学模型中存在不确定性。我们对来自不同人群的流感多波暴发进行了建模,以考虑免疫力变化和无症状感染情况,并推断R₀。

数据与方法

在特里斯坦·达库尼亚岛(TdC),1971年H3N2暴发期间96%的居民报告患病,而在1918年H1N1大流行期间,军营里的皇家空军人员只有25%报告患病。采用蒙特卡洛马尔可夫链(MCMC)方法估算模型参数分布。

研究结果

我们估计,TdC岛上的大多数岛民在第一波疫情之前没有免疫力(易感),并且几乎所有易感人群的接触都导致了症状。中位数R₀为6.4(95%可信区间3.7 - 10.7),这意味着大多数岛民接触了两次,尽管第二波中只有少数人患病,因为第一波后有临时保护。相比之下,第一波疫情之前只有51%的皇家空军人员易感,且只有38%的接触易感者报告有症状。该人群中的R₀也较低[2.9(2.3 - 4.3)],表明在部分免疫人群中病毒传播减少。

解读

我们的模型表明,1918年夏季大流行波之前皇家空军人群受到了部分保护,这可能是因为此前接触过两次大流行之间的流感。如果没有这种保护,每一例有症状的流感病例将传播给2至10例新病例,发病率最初每1至2天翻一番。遏制一种新型病毒可能比迄今认为的更加困难。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7ed/2080757/d81a98226563/pone.0001220.g001.jpg

相似文献

2
Prior immunity helps to explain wave-like behaviour of pandemic influenza in 1918-9.
BMC Infect Dis. 2010 May 25;10:128. doi: 10.1186/1471-2334-10-128.
3
Does homologous reinfection drive multiple-wave influenza outbreaks? Accounting for immunodynamics in epidemiological models.
Epidemics. 2013 Dec;5(4):187-96. doi: 10.1016/j.epidem.2013.09.003. Epub 2013 Oct 8.
4
Explaining rapid reinfections in multiple-wave influenza outbreaks: Tristan da Cunha 1971 epidemic as a case study.
Proc Biol Sci. 2011 Dec 22;278(1725):3635-43. doi: 10.1098/rspb.2011.0300. Epub 2011 Apr 27.
5
The influence of changing host immunity on 1918-19 pandemic dynamics.
Epidemics. 2014 Sep;8:18-27. doi: 10.1016/j.epidem.2014.07.004. Epub 2014 Aug 8.
6
Pandemic dynamics and the breakdown of herd immunity.
PLoS One. 2010 Mar 15;5(3):e9565. doi: 10.1371/journal.pone.0009565.
7
Qualitative analysis of the level of cross-protection between epidemic waves of the 1918-1919 influenza pandemic.
J Theor Biol. 2009 Dec 21;261(4):584-92. doi: 10.1016/j.jtbi.2009.08.020. Epub 2009 Aug 22.

引用本文的文献

1
A bayesian approach for parameterizing and predicting plasmid conjugation dynamics.
Sci Rep. 2025 Mar 3;15(1):7396. doi: 10.1038/s41598-024-82799-5.
2
Symptom propagation in respiratory pathogens of public health concern: a review of the evidence.
J R Soc Interface. 2024 Jul;21(216):20240009. doi: 10.1098/rsif.2024.0009. Epub 2024 Jul 24.
3
Epidemiological and health economic implications of symptom propagation in respiratory pathogens: A mathematical modelling investigation.
PLoS Comput Biol. 2024 May 3;20(5):e1012096. doi: 10.1371/journal.pcbi.1012096. eCollection 2024 May.
5
How effective were Australian Quarantine Stations in mitigating transmission aboard ships during the influenza pandemic of 1918-19?
PLoS Comput Biol. 2023 Nov 27;19(11):e1011656. doi: 10.1371/journal.pcbi.1011656. eCollection 2023 Nov.
6
Improving estimates of waning immunity rates in stochastic SIRS models with a hierarchical framework.
Infect Dis Model. 2023 Oct 14;8(4):1127-1137. doi: 10.1016/j.idm.2023.10.002. eCollection 2023 Dec.
7
The role of models as a decision-making support tool rather than a guiding light in managing the COVID-19 pandemic.
Front Public Health. 2022 Dec 1;10:1002440. doi: 10.3389/fpubh.2022.1002440. eCollection 2022.
8
Uncertainty and error in SARS-CoV-2 epidemiological parameters inferred from population-level epidemic models.
J Theor Biol. 2023 Feb 7;558:111337. doi: 10.1016/j.jtbi.2022.111337. Epub 2022 Nov 6.
9
Multimeric structure enables the acceleration of KaiB-KaiC complex formation induced by ADP/ATP exchange inhibition.
PLoS Comput Biol. 2022 Mar 7;18(3):e1009243. doi: 10.1371/journal.pcbi.1009243. eCollection 2022 Mar.
10
A statistical model for the dynamics of COVID-19 infections and their case detection ratio in 2020.
Biom J. 2021 Dec;63(8):1623-1632. doi: 10.1002/bimj.202100125. Epub 2021 Aug 10.

本文引用的文献

1
Model answers or trivial pursuits? The role of mathematical models in influenza pandemic preparedness planning.
Influenza Other Respir Viruses. 2007 Mar;1(2):43-54. doi: 10.1111/j.1750-2659.2007.00008.x.
2
Quantifying social distancing arising from pandemic influenza.
J R Soc Interface. 2008 Jun 6;5(23):631-9. doi: 10.1098/rsif.2007.1197.
3
Model-consistent estimation of the basic reproduction number from the incidence of an emerging infection.
J Math Biol. 2007 Nov;55(5-6):803-16. doi: 10.1007/s00285-007-0112-8. Epub 2007 Aug 8.
4
Time variations in the transmissibility of pandemic influenza in Prussia, Germany, from 1918-19.
Theor Biol Med Model. 2007 Jun 4;4:20. doi: 10.1186/1742-4682-4-20.
5
The effect of public health measures on the 1918 influenza pandemic in U.S. cities.
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7588-93. doi: 10.1073/pnas.0611071104. Epub 2007 Apr 6.
6
Seasonal dynamics of recurrent epidemics.
Nature. 2007 Mar 29;446(7135):533-6. doi: 10.1038/nature05638.
7
A model for the spread and control of pandemic influenza in an isolated geographical region.
J R Soc Interface. 2007 Apr 22;4(13):325-30. doi: 10.1098/rsif.2006.0176.
8
Antiviral effects on influenza viral transmission and pathogenicity: observations from household-based trials.
Am J Epidemiol. 2007 Jan 15;165(2):212-21. doi: 10.1093/aje/kwj362. Epub 2006 Nov 6.
10
The humoral and cellular responses induced locally and systemically after parenteral influenza vaccination in man.
Vaccine. 2006 Nov 10;24(44-46):6577-80. doi: 10.1016/j.vaccine.2006.05.041. Epub 2006 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验