Bozkaya Uğur, Acar Burak
Boğaziçi University, Electrical & Electronics Eng. Dept., VAVlab, Istanbul, Turkey.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):153-60. doi: 10.1007/978-3-540-75759-7_19.
Diffusion tensor magnetic resonance imaging (DT-MRI) based fiber tractography aims at reconstruction of the fiber network of brain. Most commonly employed techniques for fiber tractography are based on the numerical integration of the principal diffusion directions. Although these approaches generate intuitive and easy to interpret results, they are prone to cumulative errors and mostly discard the stochastic nature of DT-MRI data. The proposed Split & Merge Tractography (SMT) technique aims at overcoming the drawbacks of fiber tractography by incorporating it with Markov Chain Monte Carlo techniques. SMT is based on clustering diversely distributed short fiber tracts based on their inter-connectivity. SMT also provides real-time interaction to adjust a user defined confidence level for clustering.
基于扩散张量磁共振成像(DT-MRI)的纤维束成像旨在重建脑纤维网络。最常用的纤维束成像技术基于主扩散方向的数值积分。尽管这些方法产生的结果直观且易于解释,但它们容易产生累积误差,并且大多忽略了DT-MRI数据的随机性。提出的分裂与合并纤维束成像(SMT)技术旨在通过将其与马尔可夫链蒙特卡罗技术相结合来克服纤维束成像的缺点。SMT基于根据短纤维束之间的互连性对分布各异的短纤维束进行聚类。SMT还提供实时交互,以调整用户定义的聚类置信水平。