Suppr超能文献

一种用于潜在支持向量机的序列最小优化算法。

An SMO algorithm for the potential support vector machine.

作者信息

Knebel Tilman, Hochreiter Sepp, Obermayer Klaus

机构信息

Neural Information Processing Group, Fakultät IV, Technische Universität Berlin, 10587 Berlin, Germany.

出版信息

Neural Comput. 2008 Jan;20(1):271-87. doi: 10.1162/neco.2008.20.1.271.

Abstract

We describe a fast sequential minimal optimization (SMO) procedure for solving the dual optimization problem of the recently proposed potential support vector machine (P-SVM). The new SMO consists of a sequence of iteration steps in which the Lagrangian is optimized with respect to either one (single SMO) or two (dual SMO) of the Lagrange multipliers while keeping the other variables fixed. An efficient selection procedure for Lagrange multipliers is given, and two heuristics for improving the SMO procedure are described: block optimization and annealing of the regularization parameter epsilon. A comparison of the variants shows that the dual SMO, including block optimization and annealing, performs efficiently in terms of computation time. In contrast to standard support vector machines (SVMs), the P-SVM is applicable to arbitrary dyadic data sets, but benchmarks are provided against libSVM's epsilon-SVR and C-SVC implementations for problems that are also solvable by standard SVM methods. For those problems, computation time of the P-SVM is comparable to or somewhat higher than the standard SVM. The number of support vectors found by the P-SVM is usually much smaller for the same generalization performance.

摘要

我们描述了一种快速序列最小优化(SMO)过程,用于求解最近提出的潜在支持向量机(P-SVM)的对偶优化问题。新的SMO由一系列迭代步骤组成,在这些步骤中,拉格朗日函数针对一个(单SMO)或两个(对偶SMO)拉格朗日乘子进行优化,同时保持其他变量不变。给出了一种拉格朗日乘子的有效选择过程,并描述了两种改进SMO过程的启发式方法:块优化和正则化参数ε的退火。对这些变体的比较表明,包括块优化和退火的对偶SMO在计算时间方面表现高效。与标准支持向量机(SVM)不同,P-SVM适用于任意二元数据集,但针对libSVM的ε-SVR和C-SVC实现提供了基准测试,用于那些也可通过标准SVM方法解决的问题。对于那些问题,P-SVM的计算时间与标准SVM相当或略高。在相同泛化性能下,P-SVM找到的支持向量数量通常要少得多。

相似文献

3
Arbitrary norm support vector machines.任意范数支持向量机
Neural Comput. 2009 Feb;21(2):560-82. doi: 10.1162/neco.2008.12-07-667.
4
Fast and efficient strategies for model selection of Gaussian support vector machine.高斯支持向量机模型选择的快速高效策略
IEEE Trans Syst Man Cybern B Cybern. 2009 Oct;39(5):1292-307. doi: 10.1109/TSMCB.2009.2015672. Epub 2009 Mar 31.
5
Support vector machines for dyadic data.用于二元数据的支持向量机
Neural Comput. 2006 Jun;18(6):1472-510. doi: 10.1162/neco.2006.18.6.1472.
7
A fast method to approximately train hard support vector regression.一种快速的硬支持向量回归近似训练方法。
Neural Netw. 2010 Dec;23(10):1276-85. doi: 10.1016/j.neunet.2010.08.001. Epub 2010 Aug 10.
8
Two criteria for model selection in multiclass support vector machines.多类支持向量机中模型选择的两个标准。
IEEE Trans Syst Man Cybern B Cybern. 2008 Dec;38(6):1432-48. doi: 10.1109/TSMCB.2008.927272.
9
TSVR: an efficient Twin Support Vector Machine for regression.TSVR:一种高效的回归孪生支持向量机。
Neural Netw. 2010 Apr;23(3):365-72. doi: 10.1016/j.neunet.2009.07.002. Epub 2009 Jul 10.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验