Suppr超能文献

使用参数级联方法估计捕食者 - 猎物动态模型。

Estimating a predator-prey dynamical model with the parameter cascades method.

作者信息

Cao Jiguo, Fussmann Gregor F, Ramsay James O

机构信息

Department of Statistics and Actuarial Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.

Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, Quebec H3A 1B1, Canada.

出版信息

Biometrics. 2008 Sep;64(3):959-967. doi: 10.1111/j.1541-0420.2007.00942.x. Epub 2007 Nov 19.

Abstract

Ordinary differential equations (ODEs) are widely used in ecology to describe the dynamical behavior of systems of interacting populations. However, systems of ODEs rarely provide quantitative solutions that are close to real field observations or experimental data because natural systems are subject to environmental and demographic noise and ecologists are often uncertain about the correct parameterization. In this article we introduce "parameter cascades" as an improved method to estimate ODE parameters such that the corresponding ODE solutions fit the real data well. This method is based on the modified penalized smoothing with the penalty defined by ODEs and a generalization of profiled estimation, which leads to fast estimation and good precision for ODE parameters from noisy data. This method is applied to a set of ODEs originally developed to describe an experimental predator-prey system that undergoes oscillatory dynamics. The new parameterization considerably improves the fit of the ODE model to the experimental data sets. At the same time, our method reveals that important structural assumptions that underlie the original ODE model are essentially correct. The mathematical formulations of the two nonlinear interaction terms (functional responses) that link the ODEs in the predator-prey model are validated by estimating the functional responses nonparametrically from the real data. We suggest two major applications of "parameter cascades" to ecological modeling: It can be used to estimate parameters when original data are noisy, missing, or when no reliable priori estimates are available; it can help to validate the structural soundness of the mathematical modeling approach.

摘要

常微分方程(ODEs)在生态学中被广泛用于描述相互作用种群系统的动态行为。然而,常微分方程系统很少能提供与实际野外观测或实验数据接近的定量解,因为自然系统受到环境和人口统计学噪声的影响,而且生态学家常常不确定正确的参数化。在本文中,我们引入“参数级联”作为一种改进方法来估计常微分方程参数,以使相应的常微分方程解能很好地拟合实际数据。该方法基于用常微分方程定义惩罚项的修正惩罚平滑法以及轮廓估计的推广,这使得能从有噪声的数据中快速估计常微分方程参数并具有良好的精度。此方法应用于最初为描述一个经历振荡动态的实验性捕食者 - 猎物系统而开发的一组常微分方程。新的参数化显著改善了常微分方程模型对实验数据集的拟合。同时,我们的方法表明原始常微分方程模型所依据的重要结构假设基本正确。通过从实际数据中对功能响应进行非参数估计,验证了捕食者 - 猎物模型中连接常微分方程的两个非线性相互作用项(功能响应)的数学公式。我们提出“参数级联”在生态建模中的两个主要应用:当原始数据有噪声、缺失或没有可靠的先验估计时,它可用于估计参数;它有助于验证数学建模方法的结构合理性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验