Suppr超能文献

基于数值离散化的常微分方程模型估计方法,通过惩罚样条平滑及其在生物医学研究中的应用

Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.

作者信息

Wu Hulin, Xue Hongqi, Kumar Arun

机构信息

Department of Biostatistics and Computational Biology, University of Rochester, 601 Elmwood Avenue, Box 630, Rochester, New York 14642, USA.

出版信息

Biometrics. 2012 Jun;68(2):344-52. doi: 10.1111/j.1541-0420.2012.01752.x. Epub 2012 Feb 29.

Abstract

Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches.

摘要

微分方程在许多科学领域,如工程学、物理学和生物医学科学中,被广泛用于对物理过程的动力学进行建模。由于计算成本高和参数空间维度高,微分方程模型的参数估计是一个具有挑战性的问题。在本文中,我们提出了一类新颖的方法来估计常微分方程(ODE)模型中的参数,该方法的灵感来自于HIV动力学建模。新方法利用ODE求解器的数值离散化算法形式来构建估计方程。首先,采用惩罚样条方法估计状态变量,然后将估计出的状态变量代入ODE求解器的离散化公式中,通过回归方法获得ODE参数估计值。我们考虑三种不同阶数的离散化方法,即欧拉方法、梯形法则和龙格 - 库塔方法。高阶数值算法减少了导数近似中的数值误差,从而产生更准确的估计,但计算成本更高。为了平衡计算成本和估计精度,我们通过模拟研究表明,基于梯形离散化的估计是最好的,推荐在实际中使用。建立了所提出的基于数值离散化的估计器的渐近性质。所提出方法与现有方法的比较表明,在计算成本和估计精度之间的权衡方面,所提出的方法具有明显优势。我们将所提出的方法应用于一项HIV研究,以进一步说明所提出方法的实用性。

相似文献

2
Parameter Estimation for Semiparametric Ordinary Differential Equation Models.半参数常微分方程模型的参数估计
Commun Stat Theory Methods. 2019;48(24):5985-6004. doi: 10.1080/03610926.2018.1523433. Epub 2018 Dec 29.
8
Robust estimation for ordinary differential equation models.常微分方程模型的稳健估计
Biometrics. 2011 Dec;67(4):1305-13. doi: 10.1111/j.1541-0420.2011.01577.x. Epub 2011 Mar 14.
10
Generalized Ordinary Differential Equation Models.广义常微分方程模型。
J Am Stat Assoc. 2014 Oct;109(508):1672-1682. doi: 10.1080/01621459.2014.957287.

引用本文的文献

1
Parameter Estimation for Semiparametric Ordinary Differential Equation Models.半参数常微分方程模型的参数估计
Commun Stat Theory Methods. 2019;48(24):5985-6004. doi: 10.1080/03610926.2018.1523433. Epub 2018 Dec 29.
5
Generalized Ordinary Differential Equation Models.广义常微分方程模型。
J Am Stat Assoc. 2014 Oct;109(508):1672-1682. doi: 10.1080/01621459.2014.957287.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验