Suppr超能文献

从动态磁共振成像数据集中自动分割血管。

Automatic segmentation of blood vessels from dynamic MRI datasets.

作者信息

Kubassova Olga

机构信息

School of Computing, University of Leeds, UK.

出版信息

Med Image Comput Comput Assist Interv. 2007;10(Pt 1):593-600. doi: 10.1007/978-3-540-75757-3_72.

Abstract

In this paper we present an approach for blood vessel segmentation from dynamic contrast-enhanced MRI datasets of the hand joints acquired from patients with active rheumatoid arthritis. Exclusion of the blood vessels is needed for accurate visualisation of the activation events and objective evaluation of the degree of inflammation. The segmentation technique is based on statistical modelling motivated by the physiological properties of the individual tissues, such as speed of uptake and concentration of the contrast agent; it incorporates Markov random field probabilistic framework and principal component analysis. The algorithm was tested on 60 temporal slices and has shown promising results.

摘要

在本文中,我们提出了一种从活动性类风湿关节炎患者手部关节的动态对比增强磁共振成像(MRI)数据集中进行血管分割的方法。为了准确可视化激活事件并客观评估炎症程度,需要排除血管。该分割技术基于受个体组织生理特性(如造影剂摄取速度和浓度)驱动的统计建模;它结合了马尔可夫随机场概率框架和主成分分析。该算法在60个时间切片上进行了测试,并显示出了有前景的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验