Vigdor Boaz, Lerner Boaz
Pattern Analysis and Machine Learning Laboratory, Department of Electrical Computer Engineering, Ben-Gurion University, Beer-Sheva 84105, Israel.
IEEE Trans Neural Netw. 2007 Nov;18(6):1628-44. doi: 10.1109/tnn.2007.900234.
In this paper, we modify the fuzzy ARTMAP (FA) neural network (NN) using the Bayesian framework in order to improve its classification accuracy while simultaneously reduce its category proliferation. The proposed algorithm, called Bayesian ARTMAP (BA), preserves the FA advantages and also enhances its performance by the following: (1) representing a category using a multidimensional Gaussian distribution, (2) allowing a category to grow or shrink, (3) limiting a category hypervolume, (4) using Bayes' decision theory for learning and inference, and (5) employing the probabilistic association between every category and a class in order to predict the class. In addition, the BA estimates the class posterior probability and thereby enables the introduction of loss and classification according to the minimum expected loss. Based on these characteristics and using synthetic and 20 real-world databases, we show that the BA outperformes the FA, either trained for one epoch or until completion, with respect to classification accuracy, sensitivity to statistical overlapping, learning curves, expected loss, and category proliferation.
在本文中,我们使用贝叶斯框架对模糊ARTMAP(FA)神经网络(NN)进行修改,以提高其分类准确率,同时减少其类别增殖。所提出的算法称为贝叶斯ARTMAP(BA),它保留了FA的优点,并通过以下方式提高其性能:(1)使用多维高斯分布表示类别;(2)允许类别增长或收缩;(3)限制类别超体积;(4)使用贝叶斯决策理论进行学习和推理;(5)利用每个类别与一个类之间的概率关联来预测类。此外,BA估计类后验概率,从而能够根据最小期望损失引入损失和分类。基于这些特性并使用合成数据库和20个真实世界数据库,我们表明,在分类准确率、对统计重叠的敏感性、学习曲线、期望损失和类别增殖方面,BA的性能优于经过一个epoch训练或直到训练完成的FA。