Suppr超能文献

对一种来自HIV-1蛋白酶活性位点的突变辅助侧向药物逃逸机制的见解。

Insights into a mutation-assisted lateral drug escape mechanism from the HIV-1 protease active site.

作者信息

Sadiq S Kashif, Wan Shunzhou, Coveney Peter V

机构信息

Centre for Computational Science, Department of Chemistry, University College London, London, WC1H 0AJ, UK.

出版信息

Biochemistry. 2007 Dec 25;46(51):14865-77. doi: 10.1021/bi700864p. Epub 2007 Dec 4.

Abstract

We provide insight into the first stages of a kinetic mechanism of lateral drug expulsion from the active site of HIV-1 protease, by conducting all atom molecular dynamics simulations with explicit solvent over a time scale of 24 ns for saquinavir bound to the wildtype, G48V, L90M and G48V/L90M mutant proteases. We find a consistent escape mechanism associated with the G48V mutation. First, increased hydrophilic and hydrophobic flap coupling and water mediated disruption of catalytic dyad hydrogen bonding induce drug motion away from the dyad and promote protease flap transition to the semi-open form. Conversely, flap-inhibitor motion is decoupled in the wildtype. Second, the decrease of total interactions causes unidirectional lateral inhibitor translation by up to 4 A toward the P3 subsite exit of the active site, increased P3 subsite exposure to solvent and a complete loss of hydrophobic interactions with the opposite end of the active site. The P1 subsite moves beyond the hydrophobic active site side pocket, the only remaining steric barrier to complete expulsion being the "breathable" residue, P81. Significant inhibitor deviation is reported over 24 ns, and subsequent complete expulsion, implemented using steered molecular dynamics simulations, is shown to occur most easily for the G48V-containing mutants. Our simulations thus provide compelling support for lateral drug escape from a protease in a semi-open flap conformation. It is likely that some mutations take advantage of this escape mechanism to increase the rate of inhibitor dissociation from the protease. Finally, unidirectional translation may be countered by designing inhibitors with terminal subsites that provide sufficient anchoring to the flaps, thus increasing the steric barrier for translation in either direction.

摘要

我们通过对与野生型、G48V、L90M和G48V/L90M突变型蛋白酶结合的沙奎那韦进行24纳秒时间尺度的显式溶剂全原子分子动力学模拟,深入了解了HIV-1蛋白酶活性位点侧向药物排出动力学机制的最初阶段。我们发现了一种与G48V突变相关的一致逃逸机制。首先,亲水性和疏水性瓣片耦合增加以及水介导的催化二元氢键破坏诱导药物从二元体移开,并促进蛋白酶瓣片转变为半开放形式。相反,野生型中瓣片与抑制剂的运动解耦。其次,总相互作用的减少导致抑制剂向活性位点P3亚位点出口单向横向平移多达4埃,增加了P3亚位点对溶剂的暴露,并完全丧失了与活性位点另一端的疏水相互作用。P1亚位点移出疏水活性位点侧袋,唯一 remaining steric barrier to complete expulsion being the "breathable" residue, P81。在24纳秒内报告了显著的抑制剂偏差,随后使用引导分子动力学模拟实现的完全排出显示,含G48V的突变体最容易发生。因此,我们的模拟为药物从处于半开放瓣构象的蛋白酶中侧向逃逸提供了有力支持。一些突变可能利用这种逃逸机制来提高抑制剂从蛋白酶上解离的速率。最后,可以通过设计具有末端亚位点的抑制剂来对抗单向平移,这些末端亚位点为瓣片提供足够的锚定,从而增加双向平移的空间位垒。 (注:原文中“唯一remaining steric barrier to complete expulsion being the "breathable" residue, P81”表述不太清晰准确,可能存在信息缺失或错误表述的情况。)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验