Müller Werner E G, Wang Xiaohong, Kropf Klaus, Ushijima Hiroshi, Geurtsen Werner, Eckert Carsten, Tahir Muhammad Nawaz, Tremel Wolfgang, Boreiko Alexandra, Schlossmacher Ute, Li Jinhe, Schröder Heinz C
Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany.
J Struct Biol. 2008 Feb;161(2):188-203. doi: 10.1016/j.jsb.2007.10.009. Epub 2007 Oct 26.
The giant basal spicules of the siliceous sponges Monorhaphis chuni and Monorhaphis intermedia (Hexactinellida) represent the largest biosilica structures on earth (up to 3m long). Here we describe the construction (lamellar organization) of these spicules and of the comitalia and highlight their organic matrix in order to understand their mechanical properties. The spicules display three distinct regions built of biosilica: (i) the outer lamellar zone (radius: >300 microm), (ii) the bulky axial cylinder (radius: <75 microm), and (iii) the central axial canal (diameter: <2 microm) with its organic axial filament. The spicules are loosely covered with a collagen net which is regularly perforated by 7-10 microm large holes; the net can be silicified. The silica layers forming the lamellar zone are approximately 5 microm thick; the central axial cylinder appears to be composed of almost solid silica which becomes porous after etching with hydrofluoric acid (HF). Dissolution of a complete spicule discloses its complex structure with distinct lamellae in the outer zone (lamellar coating) and a more resistant central part (axial barrel). Rapidly after the release of the organic coating from the lamellar zone the protein layers disintegrate to form irregular clumps/aggregates. In contrast, the proteinaceous axial barrel, hidden in the siliceous axial cylinder, is set up by rope-like filaments. Biochemical analysis revealed that the (dominant) molecule of the lamellar coating is a 27-kDa protein which displays catalytic, proteolytic activity. High resolution electron microscopic analysis showed that this protein is arranged within the lamellae and stabilizes these surfaces by palisade-like pillars. The mechanical behavior of the spicules was analyzed by a 3-point bending assay, coupled with scanning electron microscopy. The load-extension curve of the spicule shows a biphasic breakage/cracking pattern. The outer lamellar zone cracks in several distinct steps showing high resistance in concert with comparably low elasticity, while the axial cylinder breaks with high elasticity and lower stiffness. The complex bioorganic/inorganic hybrid composition and structure of the Monorhaphis spicules might provide the blueprint for the synthesis of bio-inspired material, with unusual mechanical properties (strength, stiffness) without losing the exceptional properties of optical transmission.
硅质海绵动物春氏单根海绵(Monorhaphis chuni)和中间单根海绵(Monorhaphis intermedia)(六放海绵纲)的巨大基部骨针是地球上最大的生物二氧化硅结构(长达3米)。在此,我们描述这些骨针和伴体的结构(层状组织),并着重介绍它们的有机基质,以便了解其机械性能。骨针呈现出由生物二氧化硅构成的三个不同区域:(i)外层状区(半径:>300微米),(ii)粗大的轴向圆柱体(半径:<75微米),以及(iii)带有有机轴向细丝的中央轴向管(直径:<2微米)。骨针松散地覆盖着一层胶原网,该网有规则地分布着7 - 10微米大的孔洞;这层网可以被硅化。形成层状区的二氧化硅层约5微米厚;中央轴向圆柱体似乎由几乎实心的二氧化硅组成,用氢氟酸(HF)蚀刻后会变得多孔。完整骨针的溶解揭示了其复杂结构,外层区域(层状包膜)有明显的薄片,中央部分(轴向桶)更具抗性。从层状区释放有机包膜后,蛋白质层迅速解体形成不规则的团块/聚集体。相比之下,隐藏在硅质轴向圆柱体内的蛋白质轴向桶是由绳状细丝构成的。生化分析表明,层状包膜的(主要)分子是一种具有催化、蛋白水解活性的27 kDa蛋白质。高分辨率电子显微镜分析显示,这种蛋白质排列在薄片内,并通过栅栏状支柱稳定这些表面。通过三点弯曲试验结合扫描电子显微镜对骨针的力学行为进行了分析。骨针的载荷-伸长曲线显示出双相断裂/开裂模式。外层状区在几个不同步骤中开裂,显示出高抗性,同时弹性相对较低,而轴向圆柱体以高弹性和较低刚度断裂。春氏单根海绵骨针复杂的生物有机/无机混合组成和结构可能为合成具有异常机械性能(强度、刚度)且不丧失光学透射优异性能的仿生材料提供蓝图。