Suppr超能文献

对尿路致病性大肠杆菌中3型菌毛的鉴定揭示了其在生物膜形成中的作用。

Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role in biofilm formation.

作者信息

Ong Cheryl-Lynn Y, Ulett Glen C, Mabbett Amanda N, Beatson Scott A, Webb Richard I, Monaghan Wayne, Nimmo Graeme R, Looke David F, McEwan Alastair G, Schembri Mark A

机构信息

School of Molecular and Microbial Sciences, Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia.

出版信息

J Bacteriol. 2008 Feb;190(3):1054-63. doi: 10.1128/JB.01523-07. Epub 2007 Nov 30.

Abstract

Catheter-associated urinary tract infection (CAUTI) is the most common nosocomial infection in the United States. Uropathogenic Escherichia coli (UPEC), the most common cause of CAUTI, can form biofilms on indwelling catheters. Here, we identify and characterize novel factors that affect biofilm formation by UPEC strains that cause CAUTI. Sixty-five CAUTI UPEC isolates were characterized for phenotypic markers of urovirulence, including agglutination and biofilm formation. One isolate, E. coli MS2027, was uniquely proficient at biofilm growth despite the absence of adhesins known to promote this phenotype. Mini-Tn5 mutagenesis of E. coli MS2027 identified several mutants with altered biofilm growth. Mutants containing insertions in genes involved in O antigen synthesis (rmlC and manB) and capsule synthesis (kpsM) possessed enhanced biofilm phenotypes. Three independent mutants deficient in biofilm growth contained an insertion in a gene locus homologous to the type 3 chaperone-usher class fimbrial genes of Klebsiella pneumoniae. These type 3 fimbrial genes (mrkABCDF), which were located on a conjugative plasmid, were cloned from E. coli MS2027 and could complement the biofilm-deficient transconjugants when reintroduced on a plasmid. Primers targeting the mrkB chaperone-encoding gene revealed its presence in CAUTI strains of Citrobacter koseri, Citrobacter freundii, Klebsiella pneumoniae, and Klebsiella oxytoca. All of these mrkB-positive strains caused type 3 fimbria-specific agglutination of tannic acid-treated red blood cells. This is the first description of type 3 fimbriae in E. coli, C. koseri, and C. freundii. Our data suggest that type 3 fimbriae may contribute to biofilm formation by different gram-negative nosocomial pathogens.

摘要

导尿管相关尿路感染(CAUTI)是美国最常见的医院感染。尿路致病性大肠杆菌(UPEC)是CAUTI最常见的病因,可在留置导尿管上形成生物膜。在此,我们鉴定并表征了影响导致CAUTI的UPEC菌株生物膜形成的新因素。对65株CAUTI UPEC分离株进行了尿路毒力表型标记的表征,包括凝集和生物膜形成。一株分离株大肠杆菌MS2027,尽管缺乏已知促进这种表型的粘附素,但在生物膜生长方面表现出独特的优势。对大肠杆菌MS2027进行Mini-Tn5诱变,鉴定出几个生物膜生长改变的突变体。在参与O抗原合成(rmlC和manB)和荚膜合成(kpsM)的基因中含有插入片段的突变体具有增强的生物膜表型。三个生物膜生长缺陷的独立突变体在一个与肺炎克雷伯菌3型伴侣-usher类菌毛基因同源的基因位点含有插入片段。这些位于接合质粒上的3型菌毛基因(mrkABCDF)从大肠杆菌MS2027中克隆出来,当重新导入质粒时,可以补充生物膜缺陷的接合子。靶向mrkB伴侣编码基因的引物显示其存在于科氏柠檬酸杆菌、弗氏柠檬酸杆菌、肺炎克雷伯菌和产酸克雷伯菌的CAUTI菌株中。所有这些mrkB阳性菌株都能引起单宁酸处理的红细胞的3型菌毛特异性凝集。这是首次在大肠杆菌、科氏柠檬酸杆菌和弗氏柠檬酸杆菌中描述3型菌毛。我们的数据表明,3型菌毛可能有助于不同革兰氏阴性医院病原体形成生物膜。

相似文献

1
Identification of type 3 fimbriae in uropathogenic Escherichia coli reveals a role in biofilm formation.
J Bacteriol. 2008 Feb;190(3):1054-63. doi: 10.1128/JB.01523-07. Epub 2007 Nov 30.
3
The role of F9 fimbriae of uropathogenic Escherichia coli in biofilm formation.
Microbiology (Reading). 2007 Jul;153(Pt 7):2321-2331. doi: 10.1099/mic.0.2006/004648-0.
4
Conjugative plasmid transfer and adhesion dynamics in an Escherichia coli biofilm.
Appl Environ Microbiol. 2009 Nov;75(21):6783-91. doi: 10.1128/AEM.00974-09. Epub 2009 Aug 28.
5
Fimbrial profiles predict virulence of uropathogenic Escherichia coli strains: contribution of ygi and yad fimbriae.
Infect Immun. 2011 Dec;79(12):4753-63. doi: 10.1128/IAI.05621-11. Epub 2011 Sep 12.
7
F9 fimbriae of uropathogenic Escherichia coli are expressed at low temperature and recognise Galβ1-3GlcNAc-containing glycans.
PLoS One. 2014 Mar 26;9(3):e93177. doi: 10.1371/journal.pone.0093177. eCollection 2014.
9
Biofilm formation in uropathogenic Escherichia coli: association with adhesion factor genes.
Turk J Med Sci. 2018 Feb 23;48(1):162-167. doi: 10.3906/sag-1707-3.
10
Type 1 fimbriae contribute to catheter-associated urinary tract infections caused by Escherichia coli.
J Bacteriol. 2014 Mar;196(5):931-9. doi: 10.1128/JB.00985-13. Epub 2013 Dec 13.

引用本文的文献

1
Uropathogenic Escherichia coli proliferate as a coccoid morphotype inside human host cells.
PLoS Biol. 2025 Sep 3;23(9):e3003366. doi: 10.1371/journal.pbio.3003366. eCollection 2025 Sep.
3
Exploring Virulence Characteristics of Clinical Isolates from Greece.
Microorganisms. 2025 Jun 26;13(7):1488. doi: 10.3390/microorganisms13071488.
4
New insights and perspectives on the virulence of hypervirulent Klebsiella pneumoniae.
Folia Microbiol (Praha). 2025 Apr 8. doi: 10.1007/s12223-025-01261-9.
5
Bacterial adhesion strategies and countermeasures in urinary tract infection.
Nat Microbiol. 2025 Mar;10(3):627-645. doi: 10.1038/s41564-025-01926-8. Epub 2025 Feb 10.
7
Distribution of chaperone-usher fimbriae and curli fimbriae among uropathogenic Escherichia coli.
BMC Microbiol. 2024 Sep 14;24(1):344. doi: 10.1186/s12866-024-03472-5.
8
Effects of pH on the Pathogenicity of and on the Kidney: In Vitro and In Vivo Studies.
Int J Mol Sci. 2024 Jul 19;25(14):7925. doi: 10.3390/ijms25147925.
9
adhesiomeR: a tool for Escherichia coli adhesin classification and analysis.
BMC Genomics. 2024 Jun 17;25(1):609. doi: 10.1186/s12864-024-10525-6.
10
Salmonella adhesion is decreased by hypoxia due to adhesion and motility structure crosstalk.
Vet Res. 2023 Oct 24;54(1):99. doi: 10.1186/s13567-023-01233-2.

本文引用的文献

1
The role of F9 fimbriae of uropathogenic Escherichia coli in biofilm formation.
Microbiology (Reading). 2007 Jul;153(Pt 7):2321-2331. doi: 10.1099/mic.0.2006/004648-0.
2
Returning to the pre-antibiotic era in the critically ill: the XDR problem.
Crit Care Med. 2007 Jul;35(7):1789-91. doi: 10.1097/01.CCM.0000269352.39174.A4.
4
Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide.
Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12558-63. doi: 10.1073/pnas.0605399103. Epub 2006 Aug 7.
5
Actin-gated intracellular growth and resurgence of uropathogenic Escherichia coli.
Cell Microbiol. 2006 Apr;8(4):704-17. doi: 10.1111/j.1462-5822.2006.00691.x.
6
A simple and robust statistical test for detecting the presence of recombination.
Genetics. 2006 Apr;172(4):2665-81. doi: 10.1534/genetics.105.048975. Epub 2006 Feb 19.
7
Application of phylogenetic networks in evolutionary studies.
Mol Biol Evol. 2006 Feb;23(2):254-67. doi: 10.1093/molbev/msj030. Epub 2005 Oct 12.
8
Introduction of DNA into Actinomycetes by bacterial conjugation from E. coli--an evaluation of various transfer systems.
J Biotechnol. 2005 Nov 4;120(2):146-61. doi: 10.1016/j.jbiotec.2005.06.023. Epub 2005 Aug 10.
9
Capsule and fimbria interaction in Klebsiella pneumoniae.
Infect Immun. 2005 Aug;73(8):4626-33. doi: 10.1128/IAI.73.8.4626-4633.2005.
10
Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae.
Cell Mol Life Sci. 2005 Jun;62(11):1234-46. doi: 10.1007/s00018-005-4557-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验