Suppr超能文献

景天庚酮糖-7-磷酸异构酶的结构与功能,脂多糖生物合成的关键酶及抗生素佐剂的作用靶点

Structure and function of sedoheptulose-7-phosphate isomerase, a critical enzyme for lipopolysaccharide biosynthesis and a target for antibiotic adjuvants.

作者信息

Taylor Patricia L, Blakely Kim M, de Leon Gladys P, Walker John R, McArthur Fiona, Evdokimova Elena, Zhang Kun, Valvano Miguel A, Wright Gerard D, Junop Murray S

机构信息

Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada.

出版信息

J Biol Chem. 2008 Feb 1;283(5):2835-45. doi: 10.1074/jbc.M706163200. Epub 2007 Dec 3.

Abstract

The barrier imposed by lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria presents a significant challenge in treatment of these organisms with otherwise effective hydrophobic antibiotics. The absence of L-glycero-D-manno-heptose in the LPS molecule is associated with a dramatically increased bacterial susceptibility to hydrophobic antibiotics and thus enzymes in the ADP-heptose biosynthesis pathway are of significant interest. GmhA catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-manno-heptose 7-phosphate, the first committed step in the formation of ADP-heptose. Here we report structures of GmhA from Escherichia coli and Pseudomonas aeruginosa in apo, substrate, and product-bound forms, which together suggest that GmhA adopts two distinct conformations during isomerization through reorganization of quaternary structure. Biochemical characterization of GmhA mutants, combined with in vivo analysis of LPS biosynthesis and novobiocin susceptibility, identifies key catalytic residues. We postulate GmhA acts through an enediol-intermediate isomerase mechanism.

摘要

革兰氏阴性菌外膜中的脂多糖(LPS)形成的屏障,给使用原本有效的疏水性抗生素治疗这些微生物带来了重大挑战。LPS分子中缺乏L-甘油-D-甘露庚糖与细菌对疏水性抗生素的敏感性显著增加有关,因此ADP-庚糖生物合成途径中的酶备受关注。GmhA催化D-景天庚酮糖7-磷酸异构化为D-甘油-D-甘露庚糖7-磷酸,这是ADP-庚糖形成过程中的首个关键步骤。在此,我们报道了来自大肠杆菌和铜绿假单胞菌的GmhA处于无配体、结合底物和结合产物形式的结构,这些结构共同表明GmhA在异构化过程中通过四级结构的重组采用了两种不同的构象。对GmhA突变体的生化特性分析,结合LPS生物合成和新生霉素敏感性的体内分析,确定了关键催化残基。我们推测GmhA通过烯二醇中间体异构酶机制发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验