Sakura Midori, Lambrinos Dimitrios, Labhart Thomas
Institute of Zoology, University of Zurich, Zurich, Switzerland.
J Neurophysiol. 2008 Feb;99(2):667-82. doi: 10.1152/jn.00784.2007. Epub 2007 Dec 5.
Many insects exploit skylight polarization for visual compass orientation or course control. As found in crickets, the peripheral visual system (optic lobe) contains three types of polarization-sensitive neurons (POL neurons), which are tuned to different ( approximately 60 degrees diverging) e-vector orientations. Thus each e-vector orientation elicits a specific combination of activities among the POL neurons coding any e-vector orientation by just three neural signals. In this study, we hypothesize that in the presumed orientation center of the brain (central complex) e-vector orientation is population-coded by a set of "compass neurons." Using computer modeling, we present a neural network model transforming the signal triplet provided by the POL neurons to compass neuron activities coding e-vector orientation by a population code. Using intracellular electrophysiology and cell marking, we present evidence that neurons with the response profile of the presumed compass neurons do indeed exist in the insect brain: each of these compass neuron-like (CNL) cells is activated by a specific e-vector orientation only and otherwise remains silent. Morphologically, CNL cells are tangential neurons extending from the lateral accessory lobe to the lower division of the central body. Surpassing the modeled compass neurons in performance, CNL cells are insensitive to the degree of polarization of the stimulus between 99% and at least down to 18% polarization and thus largely disregard variations of skylight polarization due to changing solar elevations or atmospheric conditions. This suggests that the polarization vision system includes a gain control circuit keeping the output activity at a constant level.
许多昆虫利用天空光的偏振进行视觉罗盘定向或航向控制。正如在蟋蟀中发现的那样,外周视觉系统(视叶)包含三种类型的偏振敏感神经元(POL神经元),它们被调整到不同的(大约相差60度)电场矢量方向。因此,每个电场矢量方向都会在POL神经元之间引发特定的活动组合,仅通过三个神经信号就可以编码任何电场矢量方向。在本研究中,我们假设在大脑假定的定向中心(中央复合体)中,电场矢量方向由一组“罗盘神经元”进行群体编码。通过计算机建模,我们提出了一个神经网络模型,该模型将POL神经元提供的信号三元组转换为通过群体编码来编码电场矢量方向的罗盘神经元活动。利用细胞内电生理学和细胞标记,我们提供证据表明,具有假定罗盘神经元反应特征的神经元确实存在于昆虫大脑中:这些类似罗盘神经元(CNL)的细胞中的每一个仅被特定的电场矢量方向激活,否则保持沉默。从形态学上看,CNL细胞是从外侧副叶延伸到中央体下部的切向神经元。CNL细胞在性能上超过了模型中的罗盘神经元,对99%至至少低至18%偏振度的刺激偏振度不敏感,因此在很大程度上忽略了由于太阳高度或大气条件变化而导致的天空光偏振变化。这表明偏振视觉系统包括一个增益控制电路,可将输出活动保持在恒定水平。