Soto Armando, DelRaso Nicholas J, Schlager John J, Chan Victor T
Applied Biotechnology Branch, Division of Biosciences and Protection, Human Effectiveness Directorate, Air Force Research Laboratory, Area B, Wright Patterson Air Force Base, Dayton, OH 45433-5707, USA.
Toxicology. 2008 Jan 14;243(1-2):177-92. doi: 10.1016/j.tox.2007.10.009. Epub 2007 Oct 23.
Renal toxicity can commonly occur after exposure to xenobiotics, pharmaceutical agents or environmental pollutants. Changes in the gene expression in kidney parenchymal cells that precede and/or accompany renal injury may be hallmark critical events in the onset of pathologic changes of renal functions. Over the last several years, transcriptomic analysis has evolved to enable simultaneous analysis of the expression profiles of tens of thousands of genes in response to various endogenous and exogenous stimuli. In this study, we investigated gene expression changes in the kidney after acute exposure to a nephrotoxin, D-serine, which targets the proximal tubule of the kidney. Male F-344 rats injected intraperitoneally with a single dose of D-serine (5, 20, 50, 200 or 500 mg/kg), and gene expression profiles in the kidney were determined using the Affymetrix RAE230A gene arrays at 96 h post-dosing. D-serine treatment resulted in the up- and down-regulation of 1158 and 749 genes, respectively, over the entire dose range based on the intersection of the results of t-test, p<0.01 over two consecutive doses, and ANOVA with Bonferonni correction for multiple testing. Interestingly, both the up-and down-regulated genes show a unified dose response pattern as revealed in the self-organized map clustering analysis using the expression profiles of the 1907 differentially expressed genes as input data. There appears to be minimal changes in the expression level of these genes in the dose range of 5-50 mg/kg, while the most prominent changes were observed at the highest doses tested, i.e. 200 and 500 mg/kg. Pathway analysis of the differentially expressed genes showed perturbation of a large number of biological processes/pathways after d-serine exposure. Among the up-regulated pathways are actin cytoskeleton biogenesis and organization, apoptosis, cell cycle regulation, chromatin assembly, excision repair of damaged DNA, DNA replication and packaging, protein biosynthesis, metabolism and transport, inflammatory response, proteasome-mediated degradation of oxidatively damaged cytosolic proteins, Ras protein signal transduction, TGF-beta signaling pathway and mRNA transcription, processing, splicing and transport. On the other hand, major metabolic pathways, which include carbohydrate metabolism, TCA cycle, oxidative phosphorylation, ATP synthesis coupled electron transport, amino acid metabolism and transport, lipid metabolism, nucleotide metabolism, and vitamin metabolism, and oxidative stress response including induction of antioxidant genes and glutathione metabolism are down-regulated. As tubular epithelia have strong energy demand for normal functions, down-regulation of energy metabolism after D-serine treatment may be related to the mechanism of its nephrotoxicity. In addition, hydrogen peroxide, a reactive oxygen species, is produced as a byproduct of the metabolism of D-serine by D-amino acid oxidase in the peroxisomes of the tubular epithelia. Down-regulation of pathways for antioxidant genes induction and glutathione metabolism will likely exacerbate the cytotoxicity of this reactive oxygen species. The observation that the genes involved in apoptosis, DNA repair, proteasome pathway for the degradation of oxidatively damaged cytosolic proteins were up-regulated lends some supports to this premise. Up-regulation of pathways of cell proliferation cycle, DNA replication and gene expression process, including mRNA transcription, processing, splicing, transport, translation initiation, and protein transport along with protein complex assembly, suggests ongoing tissue repair and regeneration. Consistent with the fibrogenic function of the TGF-beta signaling pathway in various experimental renal diseases, genes encoding major extracellular matrix components such as collagens, laminins, fibronectin 1 and tenascins are also strongly up-regulated. Taken together, the results of this study provide important insights into the molecular mechanism of D-serine nephrotoxicity, as well as the activation of specific cellular pathways in response to this toxic insult.
接触外源性物质、药物制剂或环境污染物后,肾脏毒性通常会发生。肾实质细胞中基因表达的变化先于和/或伴随肾损伤,可能是肾功能病理变化发生的标志性关键事件。在过去几年中,转录组分析不断发展,能够同时分析数以万计基因对各种内源性和外源性刺激的表达谱。在本研究中,我们调查了急性暴露于肾毒素D-丝氨酸(作用于肾脏近端小管)后肾脏中的基因表达变化。给雄性F-344大鼠腹腔注射单剂量的D-丝氨酸(5、20、50、200或500mg/kg),给药后96小时使用Affymetrix RAE230A基因芯片测定肾脏中的基因表达谱。基于t检验结果的交集、连续两个剂量p<0.01以及采用Bonferonni校正进行多重检验的方差分析,在整个剂量范围内,D-丝氨酸处理分别导致1158个基因上调和749个基因下调。有趣的是,上调和下调的基因在使用1907个差异表达基因的表达谱作为输入数据的自组织映射聚类分析中显示出统一的剂量反应模式。在5-50mg/kg剂量范围内,这些基因的表达水平似乎变化最小,而在测试的最高剂量即200和500mg/kg时观察到最显著的变化。对差异表达基因的通路分析表明,D-丝氨酸暴露后大量生物过程/通路受到干扰。上调的通路包括肌动蛋白细胞骨架生物合成和组织、细胞凋亡、细胞周期调控、染色质组装、受损DNA的切除修复、DNA复制和包装、蛋白质生物合成、代谢和运输、炎症反应、蛋白酶体介导的氧化损伤胞质蛋白降解、Ras蛋白信号转导、TGF-β信号通路以及mRNA转录、加工、剪接和运输。另一方面,主要的代谢通路,包括碳水化合物代谢、三羧酸循环、氧化磷酸化、ATP合成偶联电子传递、氨基酸代谢和运输、脂质代谢、核苷酸代谢和维生素代谢,以及包括抗氧化基因诱导和谷胱甘肽代谢在内的氧化应激反应均下调。由于肾小管上皮细胞正常功能需要强大的能量需求,D-丝氨酸处理后能量代谢下调可能与其肾毒性机制有关。此外,过氧化氢作为一种活性氧,是肾小管上皮细胞过氧化物酶体中D-丝氨酸代谢的副产物。抗氧化基因诱导和谷胱甘肽代谢通路的下调可能会加剧这种活性氧的细胞毒性。参与细胞凋亡、DNA修复、蛋白酶体介导的氧化损伤胞质蛋白降解通路的基因上调这一观察结果为这一前提提供了一些支持。细胞增殖周期、DNA复制和基因表达过程(包括mRNA转录、加工、剪接、运输、翻译起始以及蛋白质运输和蛋白质复合物组装)通路的上调表明正在进行组织修复和再生。与TGF-β信号通路在各种实验性肾脏疾病中的纤维化功能一致,编码主要细胞外基质成分如胶原蛋白、层粘连蛋白、纤连蛋白1和腱生蛋白的基因也强烈上调。综上所述,本研究结果为D-丝氨酸肾毒性的分子机制以及对这种毒性损伤的特定细胞通路激活提供了重要见解。