Suppr超能文献

The Agrobacterium tumefaciens DnaK: ATPase cycle, oligomeric state and chaperone properties.

作者信息

Boshoff Aileen, Stephens Linda L, Blatch Gregory L

机构信息

Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa.

出版信息

Int J Biochem Cell Biol. 2008;40(4):804-12. doi: 10.1016/j.biocel.2007.10.017. Epub 2007 Oct 23.

Abstract

DnaK is a molecular chaperone that promotes cell survival during stress by preventing protein misfolding. The chaperone activity is regulated by nucleotide binding and hydrolysis events in the N-terminal ATPase domain, which in turn mediate substrate binding and release in the C-terminal substrate binding domain. In this study we determined that ATP hydrolysis was the rate limiting step in the ATPase cycle of Agrobacterium tumefaciens DnaK (Agt DnaK); however the data suggested that Agt DnaK had a significantly lower affinity for ATP than Escherichia coli DnaK. We show for the first time that Agt DnaK was very effective at preventing thermal aggregation of malate dehydrogenase (MDH) in a concentration dependent manner. This is in contrast to E. coli DnaK which was ineffective at preventing thermal aggregation of MDH. A mutant Agt DnaK-V431F, with a blocked hydrophobic pocket in the substrate binding domain, was unable to suppress the thermosensitivty of an E. coli dnaK103 deletion strain. However the mutation did not inhibit Agt DnaK-V431F from preventing the thermal aggregation of MDH. The oligomeric state of Agt DnaK was studied using size exclusion chromatography. We demonstrated that dilution of the Agt DnaK protein, the addition of ATP and the removal of the 10kDa C-terminal alpha-helical subdomain reduced higher order associations but did not abrogate dimerisation. Our research implies that the C-terminal alpha-helical subdomain is involved in higher order associations, while the substrate binding domain is possibly involved in dimerisation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验