Suppr超能文献

围产期高氧暴露后的呼吸可塑性不会因补充抗氧化剂而受到抑制。

Respiratory plasticity after perinatal hyperoxia is not prevented by antioxidant supplementation.

作者信息

Bavis Ryan W, Wenninger Julie M, Miller Brooke M, Dmitrieff Elizabeth F, Olson E Burt, Mitchell Gordon S, Bisgard Gerald E

机构信息

Department of Biology, Bates College, Carnegie Science Hall, Lewiston, ME 04240, USA.

出版信息

Respir Physiol Neurobiol. 2008 Feb 29;160(3):301-12. doi: 10.1016/j.resp.2007.10.013. Epub 2007 Oct 30.

Abstract

Perinatal hyperoxia attenuates the hypoxic ventilatory response in rats by altering development of the carotid body and its chemoafferent neurons. In this study, we tested the hypothesis that hyperoxia elicits this plasticity through the increased production of reactive oxygen species (ROS). Rats were born and raised in 60% O(2) for the first two postnatal weeks while treated with one of two antioxidants: vitamin E (via milk from mothers whose diet was enriched with 1000 IU vitamin E kg(-1)) or a superoxide dismutase mimetic, manganese(III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP; via daily intraperitoneal injection of 5-10 mg kg(-1)); rats were subsequently raised in room air until studied as adults. Peripheral chemoreflexes, assessed by carotid sinus nerve responses to cyanide, asphyxia, anoxia and isocapnic hypoxia (vitamin E experiments) or by hypoxic ventilatory responses (MnTMPyP experiments), were reduced after perinatal hyperoxia compared to those of normoxia-reared controls (all P<0.01); antioxidant treatment had no effect on these responses. Similarly, the carotid bodies of hyperoxia-reared rats were only one-third the volume of carotid bodies from normoxia-reared controls (P <0.001), regardless of antioxidant treatment. Protein carbonyl concentrations in the blood plasma, measured as an indicator of oxidative stress, were not increased in neonatal rats (2 and 8 days of age) exposed to 60% O(2) from birth. Collectively, these data do not support the hypothesis that perinatal hyperoxia impairs peripheral chemoreceptor development through ROS-mediated oxygen toxicity.

摘要

围产期高氧通过改变颈动脉体及其化学感受传入神经元的发育来减弱大鼠的低氧通气反应。在本研究中,我们检验了这样一个假设:高氧通过增加活性氧(ROS)的产生引发这种可塑性。大鼠在出生后的前两周在60%氧气环境中出生并饲养,同时接受两种抗氧化剂之一的处理:维生素E(通过其母亲饮食中富含1000 IU维生素E·kg⁻¹的乳汁)或超氧化物歧化酶模拟物五氯锰(III)四(1 - 甲基 - 4 - 吡啶基)卟啉(MnTMPyP;通过每天腹腔注射5 - 10 mg·kg⁻¹);随后将大鼠在室内空气中饲养至成年后进行研究。与常氧饲养的对照组相比,围产期高氧后通过颈动脉窦神经对氰化物、窒息、缺氧和等碳酸性低氧的反应(维生素E实验)或通过低氧通气反应(MnTMPyP实验)评估的外周化学反射降低(所有P<0.01);抗氧化剂处理对这些反应没有影响。同样,无论抗氧化剂处理如何,高氧饲养大鼠的颈动脉体体积仅为常氧饲养对照组的三分之一(P<0.001)。作为氧化应激指标测量的新生大鼠(2日龄和8日龄)血浆中蛋白质羰基浓度在出生后暴露于60%氧气环境中并未增加。总体而言,这些数据不支持围产期高氧通过ROS介导的氧毒性损害外周化学感受器发育这一假设。

相似文献

1
Respiratory plasticity after perinatal hyperoxia is not prevented by antioxidant supplementation.
Respir Physiol Neurobiol. 2008 Feb 29;160(3):301-12. doi: 10.1016/j.resp.2007.10.013. Epub 2007 Oct 30.
2
Carotid sinus nerve responses and ventilatory acclimatization to hypoxia in adult rats following 2 weeks of postnatal hyperoxia.
Respir Physiol Neurobiol. 2006 Feb 28;150(2-3):155-64. doi: 10.1016/j.resp.2005.05.014. Epub 2005 Jun 22.
3
Life-long impairment of hypoxic phrenic responses in rats following 1 month of developmental hyperoxia.
J Physiol. 2002 Feb 1;538(Pt 3):947-55. doi: 10.1113/jphysiol.2001.012908.
4
Adult carotid chemoafferent responses to hypoxia after 1, 2, and 4 wk of postnatal hyperoxia.
J Appl Physiol (1985). 2003 Sep;95(3):946-52. doi: 10.1152/japplphysiol.00985.2002.
5
Induced recovery of hypoxic phrenic responses in adult rats exposed to hyperoxia for the first month of life.
J Physiol. 2001 Nov 1;536(Pt 3):917-26. doi: 10.1111/j.1469-7793.2001.00917.x.
6
Environmental hyperoxia and development of carotid chemoafferent function.
Adv Exp Med Biol. 2008;605:30-4. doi: 10.1007/978-0-387-73693-8_5.
7
Ventilatory and chemoreceptor responses to hypercapnia in neonatal rats chronically exposed to moderate hyperoxia.
Respir Physiol Neurobiol. 2017 Mar;237:22-34. doi: 10.1016/j.resp.2016.12.008. Epub 2016 Dec 26.
8
Perinatal hyperoxic exposure reconfigures the central respiratory network contributing to intolerance to anoxia in newborn rat pups.
J Appl Physiol (1985). 2014 Jan 1;116(1):47-53. doi: 10.1152/japplphysiol.00224.2013. Epub 2013 Oct 24.
9
Integrated phrenic responses to carotid afferent stimulation in adult rats following perinatal hyperoxia.
J Physiol. 1997 May 1;500 ( Pt 3)(Pt 3):787-96. doi: 10.1113/jphysiol.1997.sp022058.
10
Critical developmental period for hyperoxia-induced blunting of hypoxic phrenic responses in rats.
J Appl Physiol (1985). 2002 Mar;92(3):1013-8. doi: 10.1152/japplphysiol.00859.2001.

引用本文的文献

1
Acute and chronic changes in the control of breathing in a rat model of bronchopulmonary dysplasia.
Am J Physiol Lung Cell Mol Physiol. 2019 Mar 1;316(3):L506-L518. doi: 10.1152/ajplung.00086.2018. Epub 2019 Jan 17.
2
Combined effects of intermittent hyperoxia and intermittent hypercapnic hypoxia on respiratory control in neonatal rats.
Respir Physiol Neurobiol. 2019 Feb;260:70-81. doi: 10.1016/j.resp.2018.11.002. Epub 2018 Nov 12.
3
Central and peripheral chemoreceptors in sudden infant death syndrome.
J Physiol. 2018 Aug;596(15):3007-3019. doi: 10.1113/JP274355. Epub 2018 May 19.
4
Chronic intermittent hyperoxia alters the development of the hypoxic ventilatory response in neonatal rats.
Respir Physiol Neurobiol. 2016 Jan;220:69-80. doi: 10.1016/j.resp.2015.09.015. Epub 2015 Oct 9.
6
Changes in carotid body and nTS neuronal excitability following neonatal sustained and chronic intermittent hypoxia exposure.
Respir Physiol Neurobiol. 2015 Jan 1;205:28-36. doi: 10.1016/j.resp.2014.09.015. Epub 2014 Sep 26.
7
Postnatal development of eupneic ventilation and metabolism in rats chronically exposed to moderate hyperoxia.
Respir Physiol Neurobiol. 2014 Jul 1;198:1-12. doi: 10.1016/j.resp.2014.03.010. Epub 2014 Apr 1.
8
Peripheral chemoreceptors: function and plasticity of the carotid body.
Compr Physiol. 2012 Jan;2(1):141-219. doi: 10.1002/cphy.c100069.
9
Chronic hyperoxia and the development of the carotid body.
Respir Physiol Neurobiol. 2013 Jan 1;185(1):94-104. doi: 10.1016/j.resp.2012.05.019. Epub 2012 May 26.
10
Effect of hyperoxic exposure during early development on neurotrophin expression in the carotid body and nucleus tractus solitarii.
J Appl Physiol (1985). 2012 May;112(10):1762-72. doi: 10.1152/japplphysiol.01609.2011. Epub 2012 Mar 15.

本文引用的文献

1
Respiratory plasticity in response to changes in oxygen supply and demand.
Integr Comp Biol. 2007 Oct;47(4):532-51. doi: 10.1093/icb/icm070. Epub 2007 Jul 23.
2
Peripheral arterial chemoreceptors and sudden infant death syndrome.
Respir Physiol Neurobiol. 2007 Jul 1;157(1):162-70. doi: 10.1016/j.resp.2007.02.016. Epub 2007 Mar 2.
3
Optimum oxygen therapy in preterm babies.
Arch Dis Child Fetal Neonatal Ed. 2007 Mar;92(2):F143-7. doi: 10.1136/adc.2005.092726.
4
Chemoreception in the context of the general biology of ROS.
Respir Physiol Neurobiol. 2007 Jul 1;157(1):30-44. doi: 10.1016/j.resp.2007.01.016. Epub 2007 Jan 31.
5
The role of NADPH oxidase in carotid body arterial chemoreceptors.
Respir Physiol Neurobiol. 2007 Jul 1;157(1):45-54. doi: 10.1016/j.resp.2006.12.003. Epub 2006 Dec 15.
7
The effect of hyperoxia on reactive oxygen species (ROS) in rat petrosal ganglion neurons during development using organotypic slices.
Pediatr Res. 2006 Oct;60(4):371-6. doi: 10.1203/01.pdr.0000239817.39407.61. Epub 2006 Aug 28.
8
Hypoxic ventilatory responses in rats after hypercapnic hyperoxia and intermittent hyperoxia.
Respir Physiol Neurobiol. 2007 Mar 15;155(3):193-202. doi: 10.1016/j.resp.2006.06.006. Epub 2006 Jun 23.
9
Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress.
J Physiol. 2006 Aug 15;575(Pt 1):229-39. doi: 10.1113/jphysiol.2006.112524. Epub 2006 Jun 15.
10
Antioxidant strategies in respiratory medicine.
Treat Respir Med. 2006;5(1):47-78. doi: 10.2165/00151829-200605010-00004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验